This Week In Security: The Robots Are Watching, Insecure VPNs, Graboids, And Biometric Fails

A Japanese hotel chain uses robots for nearly everything. Check in, room access, and most importantly, bedside service. What could possibly go wrong with putting embedded Android devices, complete with mics and cameras, right in every hotel room? While I could imagine bedside robots ending badly in many ways, today we’re looking at the possibility that a previous guest installed an app that can spy on the room. The kiosk mode used on these devices left much to be desired. Each bot has an NFC reader, and all it takes is an URL read by that reader to break out of the kiosk jail. From there, a user has full access to the Android system underneath, and can install whatever software they wish.

[Lance Vick] discovered this potential problem way back in July, and after 90 days of inaction has released the vulnerability. More of these hotels are being rolled out for the 2020 Olympics, and this sort of vulnerability is sure to be present in other similar kiosk devices.

VPN Compromise

In March 2018, a server in a Finnish data center was compromised through a remote management system. This was probably a Baseboard Management Controller (BMC), which is as dangerous as it is useful. Most BMCs have their own Ethernet adapter, not controlled by the host computer, and allows a remote user to access the machine just as if they had a monitor and keyboard connected to it. This particularly server was one rented by NordVPN, who was apparently not notified of the data center breach.

So what was captured from this server? Apparently the OpenVPN credentials stored on that server, as well as a valid TLS key. (Document mirror via TechCrunch) It’s been noted that this key is now expired, which does mean that it’s not being actively exploited. There were, however, about 7 months between the server break-in and the certificate expiration, during which time it could have been used for man-in-the-middle attacks.

NordVPN has confirmed the breach, and tried to downplay the potential impact. This report doesn’t seem to entirely match the leaked credentials. An attacker with this data and root access to the server would have likely been able to decrypt VPN traffic on the fly.

Graboid

Named in honor of a certain sci-fi worm, Graboid is an unusual piece of malware aimed at Docker instances. It is a true worm, in that compromised hosts are used to launch attacks against other vulnerable machines. Graboid isn’t targeting a Docker vulnerability, but simply looking for an unsecured Docker daemon exposed to the internet. The malware downloads malicious docker images, one of which is used for crypto-currency mining, while another attempts to compromise other servers.

Graboid has an unusual quirk — the quirk that earned it the name: It doesn’t constantly mine or attempt to spread, but waits over a minute between bursts of activity. This was likely an attempt to mask the presence of mining malware. It’s notable that until discovered, the malicious Docker images were hosted on the Docker Hub. Be careful what images you trust, and look for the “Docker Official Image” tag.

Iran and Misdirection

Remember a couple weeks ago, when we discussed the difficulty of attack attribution? It seems a healthy dose of such paranoia might be warranted. The American NSA and British NCSC revealed that they now suspect Russian actors compromised Iranian infrastructure and deployed malware developed by Iranian coders. The purpose of this seems to have been redirection — to compromise targets and put the blame on Iran. To date it’s not certain that this particular gambit fooled any onlookers, but this is likely not the only such effort.

Android Biometrics

New Android handsets have had a rough week. First, the Samsung Galaxy S10 had an issue with screen protectors interfering with the under-the-screen fingerprint reader. This particular problem seems to only affect fingerprints that are enrolled after a screen protector has been applied. With the protector still in place, anyone’s fingerprint is able to unlock the device. What’s happening here seems obvious. The ultrasonic fingerprint scanner isn’t able to penetrate the screen protector, so it’s recording an essentially blank fingerprint. A patch to recognize these blank prints has been rolled out to devices in Samsung’s home country of South Korea, with the rest of the world soon to follow.

The second new handset is the Google Pixel 4, which includes a new Face Unlock feature. While many have praised the feature, there is trouble in paradise. The Pixel’s Face Unlock works even when the user is asleep or otherwise unmoving. To their credit, Apple’s Face ID also checks for user alertness, trying to avoid unlocking unless the user is intentionally doing so.

The humorous scenario is a child or spouse unlocking your phone while you’re asleep, but a more sobering possibility is your face being used against you unwillingly, or even while unconscious or dead. Based on leaks, it’s likely that there was an “eyes open” mode planned but cut before launch. Hopefully the bugs can be worked out of that feature, and it can be re-added in a future update. Until then, it’s probably best not to use Google’s Face Unlock on Pixel 4 devices.

DNS-over-HTTPS Is The Wrong Partial Solution

Openness has been one of the defining characteristics of the Internet for as long as it has existed, with much of the traffic today still passed without any form of encryption. Most requests for HTML pages and associated content are in plain text, and the responses are returned in the same way, even though HTTPS has been around since 1994.

But sometimes there’s a need for security and/or privacy. While the encryption of internet traffic has become more widespread for online banking, shopping, the privacy-preserving aspect of many internet protocols hasn’t kept pace. In particular, when you look up a website’s IP address by hostname, the DNS request is almost always transmitted in plain text, allowing all the computers and ISPs along the way to determine what website you were browsing, even if you use HTTPS once the connection is made.

The idea of also encrypting DNS requests isn’t exactly new, with the first attempts starting in the early 2000s, in the form of DNSCrypt, DNS over TLS (DoT), and others. Mozilla, Google, and a few other large internet companies are pushing a new method to encrypt DNS requests: DNS over HTTPS (DoH).

DoH not only encrypts the DNS request, but it also serves it to a “normal” web server rather than a DNS server, making the DNS request traffic essentially indistinguishable from normal HTTPS. This is a double-edged sword. While it protects the DNS request itself, just as DNSCrypt or DoT do, it also makes it impossible for the folks in charge of security at large firms to monitor DNS spoofing and it moves the responsibility for a critical networking function from the operating system into an application. It also doesn’t do anything to hide the IP address of the website that you just looked up — you still go to visit it, after all.

And in comparison to DoT, DoH centralizes information about your browsing in a few companies: at the moment Cloudflare, who says they will throw your data away within 24 hours, and Google, who seems intent on retaining and monetizing every detail about everything you’ve ever thought about doing.

DNS and privacy are important topics, so we’re going to dig into the details here. Continue reading “DNS-over-HTTPS Is The Wrong Partial Solution”

File Compression By Steganography

In a world with finite storage and an infinite need for more storage space, data compression becomes a very necessary problem. Several algorithms for data compression may be more familiar – Huffman coding, LZW compression – and some a bit more arcane.

[Labunsky] decided to put to use his knowledge of steganography to create a wholly unique form of file compression, perhaps one that may gain greater notoriety among other information theorists.

Steganography refers to the method of concealing messages or files within another file, coming from the Greek words steganos for “covered or concealed” and graphe for “writing”. The practice has been around for ages, from writing in invisible ink to storing messages in moon cakes. The methods used range from hiding messages in images to evade censorship to hiding viruses in files to cause mayhem.

100% not [via xkcd]
The developer explains that since every file is just a bit sequence, observing files leads to the realization that a majority of bits will be equal on the same places. Rather than storing all of the bits of a file, making modifications to the hard drive at certain locations can save storage space. What is important to avoid, however, is lossy file compression that can wreak havoc on quality during the compression stage.

The compression technique they ended up implementing is based on the F5 algorithm that embeds binary data into JPEG files to reduce total space in the memory. The compression uses libjpeg for JPEG decoding and encoding, pcre for POSIX regular expressions support, and tinydir for platform-independent filesystem traversal. One of the major modifications was to save computation resources by disabling a password-based permutative straddling that uniformly spreads data among multiple files.

One caveat – changing even one bit of the compressed file could lead to total corruption of all of the data stored, so use with caution!

Revisiting The BlackHat Hack: How A Security Conference Was Pwned

Does anyone remember the Black Hat BCard hack in 2018? This hack has been documented extensively, most notoriously by [NinjaStyle] in his original blog post revealing the circumstances around discovering the vulnerability. The breach ended up revealing the names, email addresses, phone numbers, and personal details of every single conference attendee – an embarrassing leak from one of the world’s largest cybersecurity conferences.

To recap: The Black Hat conference badges included an embedded NFC tag storing the participant’s contact details presumably for vendors to scan for marketing purposes. After scanning the tag, [NinjaStyle] realized that his name was readily available, but not his email address and other information. Instead, the NFC reader pointed to the BCard app – an application created for reading business cards.

[NinjaStyle] decompiled the APK for the app to search for API endpoints and found that the participants each had a custom URL made using event identification values. After finding data that appeared to correspond to an eventID and badgeID, he sent a request over a web browser and found that his attendee data was returned completely unauthenticated. With this knowledge, it was possible to brute-force the contact details for every Black Hat attendee (the range of valid IDs was between 100000-999999, and there were about 18,000 attendees). Using Burp Suite, the task would take about six hours. 

He was able to get ahold of BCard to reveal the vulnerability, which was fixed in less than a day by disabling the leaky API from their legacy system. Even so, legacy APIs in conference apps aren’t an uncommon occurrence – the 2018 RSA Conference (another cybersecurity conference) also suffered from an unprotected app that allowed 114 attendee records to be accessed without permission.

With the widespread publicity of leaked attendee data, event organizers are hopefully getting smarter about the apps that they use, especially if they come from a third-party vendor. [Yashvier Kosaraju] gave a talk at TROOPERS19 about pen testing several large vendors and discovering that Kitapps (Attendify) and Eventmobi both built apps with unauthenticated access to attendee data. It’s hard to say how many apps from previous years are still around, or whether or not the next event app you use will come with authentication – just remember to stay vigilant and to not give too much of your personal data away.

This Week In Security: A Digital Café Américain, The Linux Bugs That Weren’t, The Great Nation, And More

A government is going after a human rights activists in Morocco. It sounds familiar, but I don’t think Humphrey Bogart is running the gin joint this time around.

Questionable Casablanca references aside, Amnesty International has reported another attack against human rights workers. In this case, a pair of Moroccan activists were targeted with what appears to be NSO’s Pegasus malware suite. Researchers identified text message phishing that led to malicious web pages, as well as HTTP man in the middle attacks against their mobile devices. Once the target was successfully directed to the malicious site, A collection of zero-day vulnerabilities were used to compromise the phone with the NSO malware.

NSO is an Israeli company that specializes in building malware and other cybersecurity tools for governments. As you can imagine, this specialization has earned NSO the scorn of quite a few organizations. NSO claims to have a policy framework in place that allows them to evaluate and terminate the use of their software when it is deemed illegal or abusive, but due to the nature of their contracts, that process is anything but transparent. Continue reading “This Week In Security: A Digital Café Américain, The Linux Bugs That Weren’t, The Great Nation, And More”

A Tamagotchi For WiFi Cracking

OK, let’s start this one by saying that it’s useful to know how to break security measures in order to understand how to better defend yourself, and that you shouldn’t break into any network you don’t have access to. That being said, if you want to learn about security and the weaknesses within the WPA standard, there’s no better way to do it than with a tool that mimics the behavior of a Tamagotchi.

Called the pwnagotchi, this package of artificial intelligence looks for information in local WiFi packets that can be used to crack WPA encryption. It’s able to modify itself in order to maximize the amount of useful information it’s able to obtain from whatever environment you happen to place it in. As an interesting design choice, the pwnagotchi behaves like an old Tamagotchi pet would, acting happy when it gets the inputs it needs.

This project is beyond a novelty though and goes deep in the weeds of network security. If you’re at all interested in the ways in which your own networks might be at risk, this might be a tool you can use to learn a little more about the ways of encryption, general security, and AI to boot. Of course, if you’re new to the network security world, make sure the networks you’re using are secured at least a little bit first.

Thanks to [Itay] for the tip!

This Sentence‌‌‌‌‍‌ Isn’‌‌‌‌‍‌‬t Just ‌‌‌‌‌‬‌‌a‌‌‌‌‍‬‬‍ Sentence‌‌‌‌‍‌‌‌‌‌‌‬‌‌‌‌‌‌‍‬‬‍‌‌‌‌‍‍‌‌‌‌‌‌

Some sentences have more than meets the eye, and we’re not talking about interpretive nonsense. Rather, some sentences may contain up to four paragraphs’ worth of hidden text, invisible to readers.

Thanks to Zero Width Obfuscation, it is possible to use Zero Width Characters – Unicode characters that are invisible even when you try to highlight them. They’re typically used for abstract foreign languages that require separators that don’t take up an entire space. In this case, they’re used to obfuscate and de-obfuscate hidden messages sent through text.

[inzerosight] published a browser extension that identifies, de-obfuscates, and obfuscates these messages for you on the web. It does this by querying each page for the Unicode of the Zero Width Characters (U+FEFF, U+200C, U+200D, U+200E, U+2060, U+180E) and highlighting where they’ve been spotted. The encoding replaces each Unicode character with a permutation of two of the Zero Width Characters, essentially doing a find and replace across the text message.

I’m just waiting to see how long it takes for Zero Width Obfuscation to become the next Konami Code Easter Egg.