Frozen Rat Kidney Shipping Container

The biggest allure of 3D printing, to us at least, is the ability to make hyper-personalized objects that would otherwise fall through the cracks of our mass-market economy. Take, for instance, the Frozen Rat Kidney Shipping Container, or maybe some of the less bizarro applications in the US National Institute of Health’s 3D Print Exchange.

The Exchange is dominated, at least in terms of sheer numbers, by 3D models of proteins and other biochemical structures. But there are two sections that will appeal to the hacker in you: prosthetics and lab equipment. Indeed, we were sent there after finding a nice model of a tray-agitator that we wanted to use for PCB etching. We haven’t printed one yet, but check out this flexible micropositioner.

While it’s nowhere near as comprehensive a resource as some other 3D printing model sites, the focus on 3D printing for science labs should really help those who have that particular itch to find exactly the right scratcher. Or a tailor-made flexible container for slicing frozen rat kidneys. Whatever you’re into. We don’t judge.

Man with skull image: [jaqtikkun]

Titanium Knob Doesn’t Grind Our Gears

Manual transmissions! Those blessed things that car enthusiasts swear by and everyone else pretends no longer exists. They’re usually shifted by using the gearstick, mounted in the centre console of the car. Swapping out the knob on the gearstick is a popular customization; you can have everything from 8-balls to skulls, to redback spiders mounted in epoxy, sitting proud atop your gearstick. It’s rare to see anything new under the sun, but [John Allwine] came up with something we’d never seen before.

[John]’s design leans heavily on the unique ability of additive manufacturing to produce complex hollow geometries that are incredibly difficult or impossible to produce with traditional subtractive methods. The part was designed in CAD software, and originally printed on a Makerbot in plastic. After this broke, it was decided to instead produce the part in stainless steel using Shapeway’s custom order process. You can even buy one yourself. This is a much smarter choice for a part such as a gearknob which undergoes heavy use in an automotive application. The part is printed with threads, but due to the imperfect printing process, these should be chased with a proper tap to ensure good fitment.

The design was eyecatching enough to grab the attention of a professional engineer from a 3D printing company, who worked with [John] to make the part out of titanium. It’s a very tough and hardy material, though [John] notes it was an arduous task to go about tapping the threads because of this.

It’s a great example of what can now be achieved with 3D printing technology. No longer must we settle for plastic – through services like Shapeways, it’s now possible to 3D print attractive metal parts in complex designs! And, if you’ve got the right friends, you can even step it up to titanium, too.

We’ve seen other takes on the 3D shifter handle, too – like this head.

 

MRI To 3D Print Gets Much Faster

A surprising use of 3D printing has been in creating life-like models of human body parts using MRI or CT scans. Surgeons and other medical professionals can use models to plan procedures or assist in research. However, there has been a problem. The body is a messy complex thing and there is a lot of data that comes out of a typical scan. Historically, someone had to manually identify structures on each slice — a very time-consuming process — or set a threshold value and hope for the best. A recent paper by a number of researchers around the globe shows how dithering scans can vastly improve results while also allowing for much faster processing times.

As an example, a traditional workflow to create a 3D printed foot model from scan data took over 30 hours to complete including a great deal of manual intervention. The new method produced a great model in less than an hour.

Continue reading “MRI To 3D Print Gets Much Faster”

Game Boy Camera mounted to Canon Lens using EF Mount

A Canon Lens Adapter For The Game Boy Camera

Released in 1998, the Game Boy camera was a bit ahead of its time. This specialized Game Boy cartridge featured a 128×128 pixel CMOS sensor and took 4-color greyscale photos. The camera even rotated, allowing for selfies years before that word existed.

The fixed lens on this camera meant no zoom was possible. [Bastiaan] decided to address this shortcoming by building a Canon EF Lens Mount. The resulting build looks hilarious, but actually takes some interesting photos.

[Bastiaan] designed the mount using Rhino 3D, and printed it out on a Monoprice 3D printer. After some light disassembly, the mount can be screwed onto the Game Boy Camera. With the massiveĀ 70-200 f4 lens and 1.4x extender shown here, the camera gets a max focal distance of just over 3000 mm.

One issue with the Game Boy Camera was the limited options for doing anything with the photos. They could be transferred to other Game Boy Camera cartridges, or printed using the Game Boy Printer. Fortunately, [Brian Khuu] has a modern day solution that emulates the Game Boy Printer using an Arduino. This lets you get PNG files out of the device.

Slow Cooking Filament

Getting good results from a 3D printer is like Goldilocks’ porridge. There are a lot of things that have to be just right. One common thing that gives people poor results is damp filament. This is especially insidious because the printer will work fine and then after some period time results degrade but it is no fault of the printer mechanics or electronics. There are many ways to attempt to dry filament, but [HydeTheJekyll] prefers using a slow cooker modified to operate with low air pressure.

We assume this works because the low pressure reduces the boiling point of water, allowing the water to boil off at temperatures that won’t distort the filament. The modifications aren’t very severe. You’ll need some hose and a pump along with some silicone caulk and petroleum jelly.

Continue reading “Slow Cooking Filament”

Print Your Own Filament

Ask anyone with a 3D printer what they make the most. They’ll probably say “trash.” There are extra pieces, stuff that oozes out of the extruder, support material, parts that didn’t stick to the bed, or just parts that needed a little tweaking to get right. No matter what you do, you are going to wind up with a lot of scraps. It would be great if you could recycle all this, and [3D Printing Nerd] looks at the FelFil Evo Filament extruder that promises it can do just that. You can see the video below.

As you’d expect, the device is a motorized auger that extrudes filament through a hot end not dissimilar to your printer’s hot end. You have to run a bag of special material through it first to clean out the plastic path. After that, you can create filament from standard pellets or pieces of old plastic.

Continue reading “Print Your Own Filament”

Prestretched Fabric Prints Pop Into The Third Dimension

Printing on fabric might be a familiar trick, but adding stretch into the equation gives our fabric prints the ability to reconstitute themselves back into 3D. That’s exactly what [Gabe] has accomplished; he’s developed a script that takes open 3d meshes and converts them to a hexagonal pattern that, when 3D-printed on a stretched fabric, lets them pop into 3D upon relaxing the fabric.

[Gabe’s] algorithm first runs an open 3D surface through the “Boundary-First Flattening Algorithm,” which gives [Gabe] a 2D mesh of triangles. Triangles are then mapped to hexagons based on size, which produces a landscape of 2D hexagons. Simply printing this hexagonal pattern onto prestretched fabric defines the shape of the object that will surface when the fabric is allowed to relax. As for how to wrap our heads around the mapping algorithm, as [Gabe] explains it, “The areas that experienced the most shrinkage in the flattening process should experience the least shrinkage when the fabric contracts after printing, and the regions that experienced little to no shrinkage in the flattening process should contract as much as possible in the fabric representation.”

If that seems tricky to visualize, just imagine taking a cheap halloween mask and trying to crush it flat onto a table. To smush it perfectly flat, some sections need to stretch while othersĀ need to shrink. Once flat though, we can simply keep stretching to remove all the sections that needed to shrink. At this point, if our material were extremely elastic, we could simply let go and watch our rubber mask jump back into 3D. That’s the secret behind [Gabe’s] hexagonal pattern. The size and spacing of these hexagons limit the degree to which local regions of the fabric are allowed to contract. In our rubber mask example, the sections that we stretched out the furthest have the most to travel, so they should contract as much as possible, while the sections that shrank in the initial flattening (although we kept stretching until they too needed to stretch) should shrink the least.

We’ve seen some classy fabric-printing tricks in the past. If you’re hungry for more 3D printing on fabric, have a look at [David Shorey’s] flexible fabric designs.

Thanks for the tip, [Amy]!