Supercon 2024: Photonics/Optical Stack For Smart-Glasses

Smart glasses are a complicated technology to work with. The smart part is usually straightforward enough—microprocessors and software are perfectly well understood and easy to integrate into even very compact packages. It’s the glasses part that often proves challenging—figuring out the right optics to create a workable visual interface that sits mere millimeters from the eye.

Dev Kennedy is no stranger to this world. He came to the 2024 Hackaday Supercon to give a talk and educate us all on photonics, optical stacks, and the technology at play in the world of smart glasses.

Continue reading “Supercon 2024: Photonics/Optical Stack For Smart-Glasses”

Octet Of ESP32s Lets You See WiFi Like Never Before

Most of us see the world in a very narrow band of the EM spectrum. Sure, there are people with a genetic quirk that extends the range a bit into the UV, but it’s a ROYGBIV world for most of us. Unless, of course, you have something like this ESP32 antenna array, which gives you an augmented reality view of the WiFi world.

According to [Jeija], “ESPARGOS” consists of an antenna array board and a controller board. The antenna array has eight ESP32-S2FH4 microcontrollers and eight 2.4 GHz WiFi patch antennas spaced a half-wavelength apart in two dimensions. The ESP32s extract channel state information (CSI) from each packet they receive, sending it on to the controller board where another ESP32 streams them over Ethernet while providing the clock and phase reference signals needed to make the phased array work. This gives you all the information you need to calculate where a signal is coming from and how strong it is, which is used to plot a sort of heat map to overlay on a webcam image of the same scene.

The results are pretty cool. Walking through the field of view of the array, [Jeija]’s smartphone shines like a lantern, with very little perceptible lag between the WiFi and the visible light images. He’s also able to demonstrate reflection off metallic surfaces, penetration through the wall from the next room, and even outdoor scenes where the array shows how different surfaces reflect the signal. There’s also a demonstration of using multiple arrays to determine angle and time delay of arrival of a signal to precisely locate a moving WiFi source. It’s a little like a reverse LORAN system, albeit indoors and at a much shorter wavelength.

There’s a lot in this video and the accompanying documentation to unpack. We haven’t even gotten to the really cool stuff like using machine learning to see around corners by measuring reflected WiFi signals. ESPARGOS looks like it could be a really valuable tool across a lot of domains, and a heck of a lot of fun to play with too.

Continue reading “Octet Of ESP32s Lets You See WiFi Like Never Before”

[miko_tarik] wearing diy AR goggles in futuristic setting

Pi Zero To AR: Building DIY Augmented Reality Glasses

If you’re into pushing tech boundaries from home, this one’s for you. Redditor [mi_kotalik] has crafted ‘Zero’, a custom pair of DIY augmented reality (AR) glasses using a Raspberry Pi Zero. Designed as an affordable, self-contained device for displaying simple AR functions, Zero allows him to experiment without breaking the bank. With features like video playback, Bluetooth audio, a teleprompter, and an image viewer, Zero is a testament to what can be done with determination and creativity on a budget. The original Reddit thread includes videos, a build log, and links to documentation on X, giving you an in-depth look into [mi_kotalik]’s journey. Take a sneak peek through the lens here.

[miko_tarik] wearing diy AR gogglesCreating Zero wasn’t simple. From designing the frame in Tinkercad to experimenting with transparent PETG to print lenses (ultimately switching to resin-cast lenses), [mi_kotalik] faced plenty of challenges. By customizing SPI displays and optimizing them to 60 FPS, he achieved an impressive level of real-time responsiveness, allowing him to explore AR interactions like never before. While the Raspberry Pi Zero’s power is limited, [mi_kotalik] is already planning a V2 with a Compute Module 4 to enable 3D rendering, GPS, and spatial tracking.

Zero is an inspiring example for tinkerers hoping to make AR tech more accessible, especially after the fresh news of both Meta and Apple cancelling their attempts to venture in the world of AR. If you are into AR and eager to learn from an original project like this one, check out the full Reddit thread and explore Hackaday’s past coverage on augmented reality experiments.

Continue reading “Pi Zero To AR: Building DIY Augmented Reality Glasses”

A Closer Peek At The Frame AR Glasses

The Frame AR glasses by Brilliant Labs, which contain a small display, are an entirely different approach to hacker-accessible and affordable AR glasses. [Karl Guttag] has shared his thoughts and analysis of how the Frame glasses work and are constructed, as usual leveraging his long years of industry experience as he analyzes consumer display devices.

It’s often said that in engineering, everything is a tradeoff. This is especially apparent in products like near-eye displays, and [Karl] discusses the Frame glasses’ tradeoffs while comparing and contrasting them with the choices other designs have made. He delves into the optical architecture, explaining its impact on the user experience and the different challenges of different optical designs.

The Frame glasses are Brilliant Labs’ second product with their first being the Monocle, an unusual and inventive sort of self-contained clip-on unit. Monocle’s hacker-accessible design and documentation really impressed us, and there’s a pretty clear lineage from Monocle to Frame as products. Frame are essentially a pair of glasses that incorporate a Monocle into one of the lenses, aiming to be able to act as a set of AI-empowered prescription glasses that include a small display.

We recommend reading the entire article for a full roundup, but the short version is that it looks like many of Frame’s design choices prioritize a functional device with low cost, low weight, using non-specialized and economical hardware and parts. This brings some disadvantages, such as a visible “eye glow” from the front due to display architecture, a visible seam between optical elements, and limited display brightness due to the optical setup. That being said, they aim to be hacker-accessible and open source, and are reasonably priced at 349 USD. If Monocle intrigued you, Frame seems to have many of the same bones.

Hackaday Links Column Banner

Hackaday Links: February 18, 2024

So it turns out that walking around with $4,000 worth of hardware on your head isn’t quite the peak technology experience that some people thought it would be. We’re talking about the recently released Apple Vision Pro headset, which early adopters are lining up in droves to return. Complaints run the gamut from totally foreseeable episodes of motion sickness to neck pain from supporting the heavy headset. Any eyeglass wearer can certainly attest to even lightweight frames and lenses becoming a burden by the end of the day. We can’t imagine what it would be like to wear a headset like that all day. Ergonomic woes aside, some people are feeling buyer’s remorse thanks to a lack of apps that do anything to justify the hefty price tag. The evidence for a wave of returns is mostly gleaned from social media posts, so it has to be taken with a grain of salt. We wouldn’t expect Apple to be too forthcoming with official return figures, though, so the ultimate proof of uptake will probably be how often you spot one in the wild. Apart from a few cities and only for the next few weeks, we suspect sightings will be few and far between.

Continue reading “Hackaday Links: February 18, 2024”

Hackaday Links Column Banner

Hackaday Links: February 11, 2024

Apple’s Vision Pro augmented reality goggles made a big splash in the news this week, and try as we might to resist the urge to dunk on them, early adopters spotted in the wild are making it way too easy. Granted, we’re not sure how many of these people are actually early adopters as opposed to paid influencers, but there was still quite a bit of silliness to be had, most of it on X/Twitter. We’d love to say that peak idiocy was achieved by those who showed themselves behind the wheels of their Teslas while wearing their goggles, with one aiming for an early adopter perfecta, but alas, most of these stories appear to be at least partially contrived. Some people were spotted doing their best to get themselves killed, others were content to just look foolish, especially since we’ve heard that the virtual keyboard is currently too slow for anything but hunt-and-peck typing, which Casey Niestat seemed to confirm with his field testing. After seeing all this, we’re still unsure why someone would strap $4,000 worth of peripheral-vision-restricting and easily fenced hardware to their heads, but hey — different strokes. And for those of you wondering why these things are so expensive, we’ve got you covered.

Continue reading “Hackaday Links: February 11, 2024”

Beautifully Rebuilding A VR Headset To Add AR Features

[PyottDesign] recently wrapped up a personal project to create himself a custom AR/VR headset that could function as an AR (augmented reality) platform, and make it easier to develop new applications in a headset that could do everything he needed. He succeeded wonderfully, and published a video showcase of the finished project.

Getting a headset with the features he wanted wasn’t possible by buying off the shelf, so he accomplished his goals with a skillful custom repackaging of a Quest 2 VR headset, integrating a Stereolabs Zed Mini stereo camera (aimed at mixed reality applications) and an Ultraleap IR 170 hand tracking module. These hardware modules have tons of software support and are not very big, but when sticking something onto a human face, every millimeter and gram counts.

Continue reading “Beautifully Rebuilding A VR Headset To Add AR Features”