Modified Bricks Can House Energy, Too

What if building an emergency battery were as easy as painting conductive plastic onto bricks, stacking them, and charging them up? Researchers at Washington University in St. Louis have done just that — they’ve created supercapacitors by modifying regular old red bricks from various big-box hardware stores.

The bricks are coated in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), a conductive polymer that soaks readily into the bricks’ porous surface. When the coated brick is connected to a power source such as a solar panel, the polymer soaks up ions like a sponge. PEDOT:PSS reacts with the iron oxide in the bricks, the rust that gives them their reddish-orange color. Check out the demonstration after the break — it’s a time lapse that shows three PEDOT-coated bricks powering a white LED for ten minutes.

We envision a future where a brick house could double as a battery backup when the power goes out. The researchers thought of that too, or at least had their eye on the outdoors. They waterproofed the PEDOT-coated bricks in epoxy and found they retain 90% of their capacitance and are still efficient after 10,000 charge-discharge cycles. Since this doesn’t take any special kind of brick, it seems to us that any sufficiently porous material would work as long as iron oxide is also present for the reaction. What do you think?

If you can get your hands on the stuff, PEDOT:PSS has all kinds of uses from paper-thin conductors to homebrew organic LEDs.

Continue reading “Modified Bricks Can House Energy, Too”

What Happens When You Cross A Brick With A Pixel?

There are a great many technologies we use to display information every day. We’re all familiar with plasma displays and LCDs, and then there’s more esoteric hardware like the split flap displays on municipal buses and around train stations.  However, Breakfast have been working on something that turns architectural features into a display at the same time. Enter Brixels.

The name is a portmanteau of brick and pixel, indicating that each individual brick can be independently addressed as a visual element. A Brixel installation consists of a series of columns, stacked with Brixel elements. Each individual brick on the column contains a stepper motor which can set the rotational position of the brick. The outer appearance of the individual bricks is highly customizable, as the motor hardware is integrated into the column itself. A Linux machine is used as a primary controller, which passes commands to each column’s controller over RS485, and the column controllers then pass instructions to each individual Brixel.

The Brixels are capable of continuous 360 degree rotation and also contain LEDs for various illumination based effects. The largest current installation is the Brixel Mirror, standing at 18 feet wide, 6 feet high, and containing 540 individually addressable Brixels. These are built with one half covered in a mirror finish, and combined with a depth-sensing camera for all kinds of fun interactive effects.

Brixels show that architectural features don’t have to be static – they can become kinetic, living things that can be aesthetically beautiful and also useful. Breakfast are known for their installations which use modern electronics to push the limits in their artistic installations. Their work on high-speed flip dot displays is particularly impressive. Video after the break.

[Thanks to Sheldon for the tip!]

Continue reading “What Happens When You Cross A Brick With A Pixel?”

Disney’s Humanoid Stunt Robots Throw Multiple Backflips No Sweat

What’s the biggest problem right now with humanoid robots? They fall down. Disney seems to have solved that problem here by making robots that are meant to fall down and be caught by a net. Disney’s research arm (you may know them as Imagineers) is showing off a robot called Stuntronic which can perform controlled somersaults as it flies through the air. Check the video below, you really have to watch a few times to make sure this is a robot and not a person.

It’s really interesting to follow the evolution of this robot. It began with BRICK, a limbless rectangular bot that could shift its center of gravity to control orientation while moving through the air. From there, Stickman adapted those concepts into a stick-shaped robot that had two hinged portions which allowed for controlled somersaults as it flew through the air. Stuntronic feels like a big leap from that design.

As with Stickman, it can bend to control somersaults mid-air, but with the addition of articulated arms, Stuntronic can also add twists to the acrobatic bag of tricks. To our eye, this is very lifelike and manages to completely escape the uncanny valley. This is a ringing endorsement since one of the proposed purposes of this research is for live performances at Disney’s theme parks.

The Hall of Presidents was a marvel of its time, as robots presented famous speeches while decorated in the likeness of the leaders who originally delivered them. But to stand and deliver is a trick of decades past. We hope this is a trick of next year and not something we’ll have to wake decades into the future to see in person.

Oh, and for those wondering if Stuntronic stuck the landing? The controlled delivery into the net’s warm embrace is equally impressive. Hopefully, successful landings are commonplace because they’re launching these bots with some really wicked force! In addition to the gyroscopes and accelerometers you’d expect to find in a motion-aware machine, the design uses a trio of laser rangefinders that triangulate ground position to spot the optimal landing. We haven’t seen a publication for this bot yet but check the Stickman info for more on these sensors.

Continue reading “Disney’s Humanoid Stunt Robots Throw Multiple Backflips No Sweat”

Mycelia + Sawdust = House?

Take a guess. What is the featured picture for this article? If you’re channeling your inner Google image recognition, you might say: “Best guess for this image: rock.” But, like Google, you’d be wrong. Instead, what you see are bricks made out of fungi obtained from tissues of mycelia.

By taking fungi obtained from tissues of mycelia and storing them in a jar filled with a growth medium (usually sawdust), MycoWorks is creating all sorts of materials with exciting properties. In just three to seven days, the fungi and sawdust mixture expands and forms into clumps of material, which are then used to create products like handbags, purses, bricks, you name it. According to co-founder Phil Ross, “production of this material is similar to making ravioli from scratch, and the final product is more resilient than concrete.”

The resulting materials are buoyant, self-extinguishing and stress dissipating. Moreover, the bricks are alive up until they are put in a kiln. This means bricks that are placed next to each other will grow together, effectively enabling a structure to be made out of just brick, no mortar. And, while they’re not 3D printed, houses made in this fashion have great potential. If these cool new materials have got you excited, and you want to get cozy with the fungus among us, why not go all out with an automated mushroom cultivator?

Video after the break.

Continue reading “Mycelia + Sawdust = House?”

Replacing The IPhone 6 Button Bricks The Phone

News comes from The Guardian that the iPhone 6 will break because of software updates due to non-authorized hardware replacements. Several thousand iPhone 6 users are claiming their phones have been bricked thanks to software updates if the home button – and the integrated TouchID fingerprint sensor – were replaced by non-Apple technicians.

For the last few iPhone generations, the TouchID fingerprint sensor has been integrated into the home button of every iPhone. This fingerprint sensor provides an additional layer of security for the iPhone, and like everything on smartphones, there is a thriving market of companies who will fix broken phones. If you walk into an Apple store, replacing the TouchID sensor will cost about $300. This part is available on Amazon for about $10, and anyone with a pentalobe screwdriver, spudger, and fine motor control can easily replace it. Doing so, however, will eventually brick the phone, as software updates render the device inoperable if the TouchID sensor is not authorized by Apple.

According to an Apple spokeswoman, the reason for the error 53 is because the fingerprint data is uniquely paired to the touch ID sensor found in the home button. If the TouchID sensor was substituted with a malicious TouchID sensor, complete and total access to the phone would be easy, providing a forehead-slapping security hole. Error 53 is just Apple’s way of detecting devices that were tampered with.

In fairness to Apple, not checking the authenticity of the touch ID would mean a huge security hole; if fingerprint data is the only thing keeping evil balaclava-wearing hackers out of your phone, simply replacing this sensor would grant them access. While this line of reasoning is valid, it’s also incredibly stupid: anyone can get around the TouchID fingerprint sensor with a laser printer and a bit of glue. If you ever get ahold of the German Defense Minister’s iPhone, the fingerprint sensor isn’t going to stop you.

This is a rare case where Apple are damned if they do, damned if they don’t. By not disabling the phone when the TouchID sensor is replaced, all iPhones are open to a gaping security hole that would send the Internet into a tizzy. By bricking each and every iPhone with a replacement TouchID sensor, Apple gets a customer support nightmare. That said, the $300 replacement cost for the TouchID sensor will get you a very nice Android phone that doesn’t have this problem.

Hope It’s Real: 3D Printing Houses With Bricks

You’ve just got to go with the hype on this one, because it’s obviously not ready for prime time yet. But a few days ago murmurs started circling the net that an Australian inventor had developed a robot capable of building complicated structure from brick all by itself.

bricklaying-robotBefore you go off your rocker… we’re definitely not calling this real. It’s a proof of concept at best, but that doesn’t prevent us from getting excited. How long have you been waiting for robots that can build entire structures on our behalf? We were excited at the prospect of extruding walls of concrete. But this is more like LEGO buildings in the real world. The beast cuts brick to length, conveys each brick along the telescoping arm, and butters them as it lays them in place. At least that’s what the rendered video after the break shows.

We’re hearing about this now because FastBrick Robotics, the company [Mark Pivac] founded and has spent ten years developing the Hadrian project at, was just sold to a company called DMY Capital Limited. Of course they’re going to want to get some press out of the sale.

There is an image of the brick feeder on an existing excavator that frankly looks photoshopped. And some real images like the one seen here and another of the “print head” holding some bricks. But it’s enough to think there’s potential here.

The idea is that the base of the robot is fixed with the arm long enough to reach any part of the structure being built. Precise positioning is achieved by a fixed marker in a different position from the robot. The head triangulates its position using laser range-finding with the marker (having said that we now assume there needs to be more than one marker).

So what do you think? Are we ever going to see this incredibly complicated bucket of awesome producing structures in our neighborhood which the Big Bad Wolf simply cannot blow down?

Continue reading “Hope It’s Real: 3D Printing Houses With Bricks”

Unbricking A Counterfeit FTDI Chip

If you haven’t been paying attention, FTDI, makers of one of the most popular USB to UART chips out there, really screwed up last October. They released a driver to Microsoft that would brick unauthorized clones of their chip by setting the USB PID pair to zero. This renders the chip unusable by any computer. That Windows driver has been fixed by now, but there’s probably still a good number of bricked FTDI chips out there. [Tony G] figured out how to fix it, and it only requires a few lines in the console of a proper OS.

The bricking Windows driver worked by setting the USB PID on fake chips to 0000. Luckily, there are ways to reprogram these chips. [Mark Lord] released a set of tools that will reset the USB PID. This unbricks the chip, fixing whatever device it’s attached to. It’s also a great reminder to either update or roll back your Windows drivers.