AI Might Kill Us All (With Carbon Emissions)

So-called artificial intelligence (AI) is all the rage right now between your grandma asking ChatGPT how to code in Python or influencers making videos without having to hire extras, but one growing concern is where the power is going to come from for the data centers. The MIT Technology Review team did a deep dive on what the current situation is and whether AI is going to kill us all (with carbon emissions).

Probably of most interest to you, dear hacker, is how they came up with their numbers. With no agreed upon methods and different companies doing different types of processing there were a number of assumptions baked into their estimates. Given the lack of information for closed-source models, Open Source models were used as the benchmark for energy usage and extrapolated for the industry as a whole. Unsurprisingly, larger models have a larger energy usage footprint.

While data center power usage remained roughly the same from 2005 to 2017 as increases in efficiency offset the increase in online services, data centers doubled their energy consumption by 2023 from those earlier numbers. The power running into those data centers is 48% more carbon intensive than the US average already, and expected to rise as new data centers push for increased fossil fuel usage, like Meta in Louisiana or the X data center found to be using methane generators in violation of the Clean Air Act.

Technology Review did find “researchers estimate that if data centers cut their electricity use by roughly half for just a few hours during the year, it will allow utilities to handle some additional 76 gigawatts of new demand.” This would mean either reallocating requests to servers in other geographic regions or just slowing down responses for the 80-90 hours a year when the grid is at its highest loads.

If you’re interested in just where a lot of the US-based data centers are, check out this map from NREL. Still not sure how these LLMs even work? Here’s an explainer for you.

An artist's depiction of a lystrosaurus munching on a prehistoric plant. It looks kind of like a hippo with a beak. The main body of the animal is grey-ish green and it's beak is ivory with two tusks jutting out from its top jaw.

Mammalian Ancestors Shed Light On The Great Dying

As we move through the Sixth Extinction, it can be beneficial to examine what caused massive die-offs in the past. Lystrosaurus specimens from South Africa have been found that may help clarify what happened 250 million years ago. [via IFLScience]

The Permian-Triassic Extinction Event, or the Great Dying, takes the cake for the worst extinction we know about so far on our pale blue dot. The primary cause is thought to be intense volcanic activity which formed the Siberian Traps and sent global CO2 levels soaring. In Karoo Basin of South Africa, 170 tetrapod fossils were found that lend credence to the theory. Several of the Lystrosaurus skeletons were preserved in a spread eagle position that “are interpreted as drought-stricken carcasses that collapsed and died of starvation in and alongside dried-up water sources.”

As Pangea dried from increased global temperatures, drought struck many different terrestrial ecosystems and changed them from what they were before. The scientists say this “likely had a profound and lasting influence on the evolution of tetrapods.” As we come up on the Thanksgiving holiday here in the United States, perhaps you should give thanks for the prehistoric volcanism that led to your birth?

If you want to explore more about how CO2 can lead to life forms having a bad day, have a look at paleoclimatology and what it tells us about today. In more recent history, have a look at how we can detect volcanic eruptions from all around the world and how you can learn more about the Earth by dangling an antenna from a helicopter.

 

How Pollution Controls For Cargo Ships Made Global Warming Worse

In 2020 international shipping saw itself faced with new fuel regulations for cargo ships pertaining to low sulfur fuels (IMO2020). This reduced the emission of sulfur dioxide aerosols from these ships across the globe by about 80% practically overnight and resulting in perhaps the biggest unintentional geoengineering event since last century.

As detailed in a recent paper by [Tianle Yuan] et al. as published in Nature, by removing these aerosols from the Earth’s atmosphere, it also removed their cooling effect. Effectively this change seems to have both demonstrated the effect of solar engineering, as well as sped up the greenhouse effect through radiative forcing of around 0.2 Watt/m2 of the global ocean.

The inadvertent effect of the pollution by these cargo ships appears to have been what is called marine cloud brightening (MCB), with the increased reflectivity of said clouds diminishing rapidly as these pollution controls came into effect. This was studied by the researchers using a combination of satellite observations and a chemical transport model, with the North Atlantic, the Caribbeans and South China Sea as the busiest shipping channels primarily affected.

Although the lesson one could draw from this is that we should put more ships on the oceans burning high-sulfur fuels, perhaps the better lesson is that MCB is a viable method to counteract global warming, assuming we can find a method to achieve it that doesn’t also increase acid rain and similar negative effects from pollution.

Featured image: Time series of global temperature anomaly since 1980. (Credit: Tianle Yuan et al., Nature Communications Earth Environment, 2024)

Climate Change May Make Days Longer

For those who say there’s never enough time in a day, your wish for more time is getting granted, if ever so slightly. Scientists have now found a new source of our days getting longer — climate change.

You may have already been aware that the length of the day on Earth has been getting longer over time due to the drag exerted on our planet by our friendly neighborhood Moon. Many other factors come into play though, including the Earth’s own mass distribution. As the Earth warms and polar caps melt, the water redistributes to the Earth’s equator causing it to slow more rapidly.

In the worst-case scenario, RCP8.5, it would result in climate-related effects to planetary rotational velocity even larger than those caused by lunar tides. Under that scenario, the earth would probably be a less pleasant place to live in many other ways, but at least you’d have a little more time in your day.

While we’re talking about time, we wonder what ever happened to getting rid of Daylight Savings in the US? If you long for a simpler time, perhaps you should take up repairing mechanical watches and clocks?

The Greenhouse Effect Isn’t For Greenhouses

Think of a greenhouse. It’s a structure with glass walls that lets light in and traps heat, all for the benefit of the plants inside. As for how it works, that’s elementary! It’s all down to the greenhouse effect… right?

Alas, no. So many of us have been mislead. Let’s rexamine how we think greenhouses work, and then explore what’s actually going on.
Continue reading “The Greenhouse Effect Isn’t For Greenhouses”

Measuring Trees Via Satellite Actually Takes A Great Deal Of Field Work

Figuring out what the Earth’s climate is going to do at any given point is a difficult task. To know how it will react to given events, you need to know what you’re working with. This requires an accurate model of everything from ocean currents to atmospheric heat absorption and the chemical and literal behavior of everything from cattle to humans to trees.

In the latter regard, scientists need to know how many trees we have to properly model the climate. This is key, as trees play a major role in the carbon cycle by turning carbon dioxide into oxygen plus wood. But how do you count trees at a continental scale? You’ll probably want to get yourself a nice satellite to do the job.

Continue reading “Measuring Trees Via Satellite Actually Takes A Great Deal Of Field Work”

Satellite Provides Detailed Data On Antarctic Ice

Ever since the first satellites started imaging the Earth, scientists have been using the data gathered to learn more about our planet and improve the lives of its inhabitants. From weather forecasting to improving crop yields, satellites have been put to work in a wide array of tasks. The data they gather can go beyond imaging as well. A new Chinese satellite known as Fengyun-3E is using some novel approaches to monitor Antarctic sea ice in order to help scientists better understand the changing climate at the poles.

While it is equipped with a number of other sensors, one of the more intriguing is a piece of equipment called WindRad which uses radar to measure wind at various locations and altitudes based on how the radar waves bounce off of the atmosphere at various places.  Scientists have also been able to use this sensor to monitor sea ice, and can use the data gathered to distinguish new sea ice from ice which is many years old, allowing them to better understand ice formation and loss at the poles. It’s also the first weather satellite to be placed in an early morning orbit, allowing it to use the long shadows cast by the sun on objects on Earth’s surface to gather more information than a satellite in other orbits might be able to.

With plenty of other imaging sensors on board and a polar orbit, it has other missions beyond monitoring sea ice. But the data that it gathers around Antarctica should give scientists more information to improve climate models and understand the behavior of sea ice at a deeper level. Weather data from satellites like these isn’t always confined to academia, though. Plenty of weather satellites broadcast their maps and data unencrypted on radio bands that anyone can access.