Heathkit: Getting Closer This Time?

We’ve been following the Heathkit reboot for a while now, and it looks like the storied brand is finally getting a little closer to its glory days. I was thumbing through the new issue of QST magazine while I was listening in on a teleconference for the day job – hey, a guy can multitask, can’t he? – when I spied an ad for the Heathkit GC-1006 digital clock, which they brand the “Most Reliable Clock”. As soon as the meeting was over, I headed over to the Heathkit website to check out this latest offering.

I had cautiously high hopes. After the ridiculous, feature-poor, no-solder AM radio kit (although they sensibly followed up with a solder version of that kit) and an overpriced 2-meter ham antenna, I figured there was nowhere for Heathkit to go but up. And the fact that the new kit was a clock was encouraging. I have fond memories of Heathkit clocks from the 80s when I worked in a public service dispatch center; Heathkit clocks were about the only clocks you could get that would display 24-hour time. Could this actually be a kit worth building?

Alas, the advertisement was another one of those wall-of-text things that the new Heathkit seems so enamored of. And like the previous two kits offered, the ad copy is full of superlatives and cutesy little phrases that really turn me off. Then again, most advertising turns me off, so I’m probably not a good gauge of such things. Nor am I sure I’m in the target demographic for this product – in fact, I’m not even sure to whom this product is being marketed. Is it the younger crowd of the maker movement? Or is it the old-timers who want to relive the glory days of Heathkit builds? Given the $100 price, I’d have to say the nostalgia market is the most likely buyer of this one.

To be fair, $100 might not be that much to spend on a decent clock. I’m a bit of a clock snob, and I’ve gotten to the point where I can almost tell which chip is in a clock just by looking at the controls. The feature set of a modern digital clock has converged to a point where every clock has almost exactly the same deficiencies. The GC-1006 claims to address a few of my hot button issues, like not being able to set the time to the exact second – I hate that! An auto-dimming display is nice, as is a 12- or 24-hour display, a 10-minute timer (nice for hams, who are required to ID their station every 10 minutes), and a battery backup that claims to last for 4 weeks.

Is this worth buying? At this point, I’m on the fence. Looking at an unboxing video, it appears to be a high-quality kit, and it would be fun to build. But spending $100 on a clock might be a tough sell to my loan officer.

Still, I think I might take one for the team here so we have a first-hand report of what the new Heathkit is all about. And it would be nice to build another Heathkit product. I’ll let you know how it goes.

Continue reading “Heathkit: Getting Closer This Time?”

The Little Mechanism That Made Precise Time-keeping Possible

There are few things to which we pay as much attention as the passage of time. We don’t want to be late for work, or a date. Even more importantly, we don’t want to age and die. Good time keeping is an all important human activity, and we started to worry about it as soon as we abandoned our hunter-gatherer lifestyle and agriculture and commerce emerged.

By de:Benutzer:Flyout - own work, http://de.wikipedia.org/wiki/Bild:Kerzenuhr.jpg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1783765
A candle clock

Measuring time needs two things: a repetitive process to mark equal increments of time, and a way of tracking and displaying the result. The first timekeeping devices relied of course on the movement of the sun. Ancient Egyptians, around 3500 BC, built obelisks that, by casting a shadow on the ground at different positions, gave an approximate idea of the time. Next came the use of some medium that was consumed at a regular pace: candle, incense, water and sand clocks are examples. A great advancement came with the advent of the mechanical clock, and here is where the escapement mechanism appears.

Continue reading “The Little Mechanism That Made Precise Time-keeping Possible”

ESP Clock Needs More Power

[Victor-Chew] is tired of setting clocks. After all, here we are in the 21st century, why do we have to adjust clocks (something we just did for daylight savings time)? That’s why [Victor] came up with ESPClock.

Based on a $2 Ikea analog clock, [Victor] had a few design goals for the project:

  • Automatically set the time from the network
  • Automatically adjust for daylight savings time
  • Not cost much more than a regular clock
  • Run for a year on batteries

The last goal is the only one that remains unmet. Even with a large battery pack, [Victor’s] clock runs out of juice in a week or so. You can see some videos of the clock syncing with network time, below.

Continue reading “ESP Clock Needs More Power”

Really Big Digital Clock Finds Use For Really Big 3D Printer

What does it take to make a really big digital clock? If [Ivan Miranda]’s creation is any gauge, it takes a really big 3D printer, an armful of Neopixel strips, and a ton of hot melt glue.

It looks like [Ivan]’s plus-size clock is mainly an exercise for his recently completed large-bed custom 3D printer, in itself a project worth checking out. But it’s a pretty ambitious project, and one that has some possibilities for enhancements. Each of the four seven-segment displays was printed separately, with a black background, translucent white for the segments, and recesses for five RGB LEDs each. The four digits and colon spacer are mated together into one display, and an ESP8266 fetches the time from a NIST server and drives the segments. What’s really interesting about [Ivan]’s projects is that he constrains himself to finishing them each in a week. That explains the copious amount of hot glue he uses, and leaves room for improvements. We’d love to see this display built into a nice walnut case with a giant red diffusing lens. Even as it stands it certainly makes a statement.

We’ve featured other outsized seven-segment displays before, but few as big as this one.

Continue reading “Really Big Digital Clock Finds Use For Really Big 3D Printer”

Sunrise Alarm Clock With Organic Twist

Most hardware hackers have a clock project or two under their belt. A pretty common modification to a generic clock is to add lights to it, and if the clock has an alarm feature, it’s not too big of a stretch to try to get those lights to simulate a sunrise for a natural, peaceful morning alarm. The problem that a lot of us run across, though, is wiring up enough LEDs with enough diffusion to make the effect work properly and actually get us out of bed without an annoying buzzer.

Luckily for all of us, [jarek319] came up with an elegant and simple solution that should revolutionize all future sunrise alarm clock builds. He found a cheap OLED display and drove it with an LM317 voltage regulator. By driving the ADJ pin on the regulator, he was able to effectively drive the OLED with a makeshift PWM signal. This allows the OLED’s brightness to be controlled. [jarek319] threw some NTP code up on an ESP12E and did a little bit of programming for the alarm, and the problem is solved.

While an OLED is pretty much the perfect solution for a sunrise alarm clock, if you have a problem sourcing one or are just looking for an excuse to use up a strip of addressable LEDs, you can build a sunrise alarm clock out of almost any other light source.

Laser Pointer Clock Makes Timekeeping A Drawn-Out Affair

Designing a unique clock to flex your technical skills can be a rewarding experience and result in an admirable showpiece for your home. [Andres Robam] saw an opportunity to make a laser-pointer clock that draws the current time onto a glow-in-the-dark sticker.

A pair of stepper motors tilt and pan the laser’s mount — designed in SolidWorks and 3D printed. There was an issue with the motor’s shaft having some slack in it — enough to affect the accuracy of the laser. [Andres] cleverly solved the issue by using a pen’s spring to generate enough tension in the system, correcting it. A NODEmcu v2 is the brains of the clock — chosen because of its built-in WiFi capacity and compatibility with the Arduino IDE — and a 5mW laser sketches the time onto the sticker.

Continue reading “Laser Pointer Clock Makes Timekeeping A Drawn-Out Affair”

Minimal Arduino Clock

Making a clock with a common microcontroller like an Arduino isn’t very difficult. However, if you’ve tried it, you probably discovered that keeping track of wall time is difficult without some external hardware. [Barzok] has a very minimal clock build. It takes a handful of LED arrays with an integrated driver, an Arduino Nano, a real-time clock module, and a voltage regulator.

Continue reading “Minimal Arduino Clock”