Super-Portable, Tunable VHF Antenna

Ham radio is having a bit of a resurgence these days, likely due to awards programs like Parks on the Air (POTA) and Summits on the Air (SOTA), which encourage amateur radio operators to head outside and “activate” at various parks and mountaintops. For semi-mobile operations like this, a low-power radio is often used, as well as other portable gear including antennas. In the VHF/UHF world, the J-pole is a commonly used antenna as well, and this roll-up tunable J-pole antenna is among the most versatile we’ve seen.

The antenna uses mostly common household parts which keeps the cost down tremendously. The structure of the antenna is replacement webbing for old lawn chairs, and the conductive elements for the antenna are made out of metallic HVAC tape which is fixed onto the chair webbing after being cut to shape. The only specialized parts needed for this is a 3D printed bracket which not only holds the hookup for the coax cable feeding the antenna, but is also capable of sliding up and down the lower section of the “J” to allow the antenna to be easily tuned.

As long as you have access to a 3D printer, this antenna is exceptionally portable and pretty easy to make as well. Although VHF and UHF aren’t too popular for POTA and SOTA, portable equipment like this for the higher frequency bands is still handy to have around when traveling or operating remotely. With the antenna situation sorted out, a DIY radio that can make use of it might be in order as well.

Continue reading “Super-Portable, Tunable VHF Antenna”

Conductive Gel Has Potential

There are some technologies first imagined in the Star Trek universe have already come to exist in the modern day. Communicators, tablet computers, and computer voice recognition are nearly as good as seen in the future, and other things like replicators and universal translators are well on their way. Star Trek: Voyager introduced a somewhat ignored piece of futuristic technology, the bio-neural gel pack. Supposedly, the use of an organic gel improved the computer processing power on the starship. This wasn’t explored too much on the series, but [Tom] is nonetheless taking the first steps to recreating this futuristic technology by building circuitry using conductive gel.

[Tom]’s circuitry relies on the fact that salts in a solution can conduct electricity, so in theory filling a pipe or tube with a saline solution should function similarly to a wire. He’s also using xanthan gum to increase viscosity. While the gel mixture doesn’t have quite the conductivity of copper, with a slight increase in the supplied voltage to the circuit it’s easily able to be used to light LEDs. Unlike copper, however, these conductive gel-filled tubes have some unique properties. For example, filling a portion of the tube with conductive gel and the rest with non-conductive mineral oil and pushing and pulling the mixture through the tube allows the gel to move around and engage various parts of a circuit in a way that a simple copper wire wouldn’t be able to do.

In this build specifically, [Tom] is using a long tube with a number of leads inserted into it, each of which correspond to a number on a nixie tube. By moving the conductive gel, surrounded by mineral oil, back and forth through the tube at precise intervals each of the numbers on the nixie tube can be selected for. It’s not yet quite as good as the computer imagined in Voyager but it’s an interesting concept nonetheless, not unlike this working replica of a communicator badge.

Continue reading “Conductive Gel Has Potential”

Battery Of The Future, Now Buildable Yourself

In theory, batteries and capacitors are fairly simple. One stores energy chemically and the other stores energy in an electric field. In practice though, building an energy storage device that has a practical amount of energy density is delicate, complex work. But if you have access to a few chemical compounds it’s actually not too difficult to produce useful batteries and electrolytic capacitors with the use of ionic liquids.

Ionic liquids are conductive liquids with a few other important qualities. Almost all of the ones shown can be built with relatively common compounds, and most of the products have advantageous physical qualities, making them stable and relatively safe for use. With some equipment found in a chemistry lab it’s possible to produce a wide variety of these liquids without too much hassle (although one method outlined uses an inert gas chamber), and from there batteries and capacitors can be built by allowing the ionic liquids to be absorbed into the device.

The video below shows the production of several of these devices and then illustrates their effects by running a small LED light. While they’re probably not going to be used to create DIY electric cars anytime soon, the production and improvement of atypical energy storage devices will be the key to a large part of the energy needs of society now and into the future, especially aluminum batteries like these.

Continue reading “Battery Of The Future, Now Buildable Yourself”

A Low Cost, Dead Tree Touch Screen

Remember the “paperless office”? Neither do we, because despite the hype of end-to-end digital documents, it never really happened. The workplace is still a death-trap for trees, and with good reason: paper is cheap, literally growing on trees, and it’s the quickest and easiest medium for universal communication and collaboration. Trouble is, once you’re done scribbling your notes on a legal pad or designing the Next Big Thing on a napkin, what do you do with it?

If you’re anything like us, the answer to that question is misplacing or destroying the paper before getting a chance to procrastinate transcribing it into some useful digital form. Wouldn’t paper that automatically digitizes what you draw or write on it be so much better? That’s where this low-cost touch-sensitive paper (PDF link) is headed, and it looks like it has a lot of promise. Carnegie-Mellon researchers [Chris Harrison] and [Yang Zhang] have come up with cheap and easy methods of applying conductive elements to sheets of ordinary paper, and importantly, the methods can scale well to the paper mill to take advantage of economies of scale at the point of production. Based on silk-screened conductive paints, the digitizer uses electrical field tomography to locate touches and quantify their pressure through a connected microcontroller. The video below shows a prototype in action.

Current cost is 30 cents a sheet, and if it can be made even cheaper, the potential applications range from interactive educational worksheets to IoT newspapers. And maybe if it gets really cheap, you can make a touch-sensitive paper airplane when you’re done with it.

Continue reading “A Low Cost, Dead Tree Touch Screen”

The Internet Of Non-Electronic Things

The bill of materials for even the simplest IoT project is likely to include some kind of microcontroller with some kind of wireless module. But could the BOM for a useful IoT thing someday list only a single item? Quite possibly, if these electronics-less 3D-printed IoT devices are any indication.

While you may think that the silicon-free devices described in a paper (PDF link) by University of Washington students [Vikram Iyer] and [Justin Chan] stand no chance of getting online, they’ve actually built an array of useful IoT things, including an Amazon Dash-like button. The key to their system is backscatter, which modulates incident RF waves to encode data for a receiver. Some of the backscatter systems we’ve featured include a soil sensor network using commercial FM broadcasts and hybrid printable sensors using LoRa as the carrier. But both of these require at least some electronics, and consequently some kind of power. [Chan] and [Iyer] used conductive filament to print antennas that can be mechanically switched by rotating gears. Data can be encoded by the speed of the alternating reflection and absorption of the incident WiFi signals, or cams can encode data for buttons and similar widgets.

It’s a surprisingly simple system, and although the devices shown might need some mechanical tune-ups, the proof of concept has a lot of potential. Flowmeters, level sensors, alarm systems — what kind of sensors would you print? Sound off below.

Continue reading “The Internet Of Non-Electronic Things”

Casein, Cello, Carrotinet, And Copper Oxide, Science Grab Bag

One of our favorite turnips, oops, citizen scientists [The Thought Emporium], has released his second Grab Bag video which can also be seen after the break. [The Thought Emporium] dips into a lot of different disciplines as most of us are prone to do. Maybe one of his passions will get your creative juices flowing and inspire your next project. Or maybe it will convince some clever folks to take better notes so they can share with the rest of the world.

Have you ever read a recipe and thought, “What if I did the complete opposite?” In chemistry lab books that’s frowned upon but it worked for the Reverse Crystal Garden. Casein proteins make cheese, glue, paint, and more so [The Thought Emporium] gave us a great resource for making our own and demonstrated a flexible conductive gel made from that resource. Since high school, [The Thought Emporium] has learned considerably more about acoustics and style as evidence by his updated cello. Maybe pulling old projects out of the closet and giving them the benefit of experience could revitalize some of our forgotten endeavors.

If any of these subjects whet your whistle, consider growing gorgeous metal crystals, mixing up some conductive paint or learning the magnetic cello. Remember to keep your lab journal tidy and share on Hackday.io.

Continue reading “Casein, Cello, Carrotinet, And Copper Oxide, Science Grab Bag”

A Flexible Sensor That Moves With You

If you have a project in mind that requires some sort of gesture input or precise movements, it might become a nettlesome problem to tackle. Fear this obstacle no longer: a team from the Wyss Institute for Biologically Inspired Engineering at Harvard have designed a novel way to make wearable sensors that can stretch and contort with the body’s natural movements.

The way they work is ingenious. Layers of silicone are sandwiched between two lengths of silver-plated conductive fabric forming — by some approximation — a capacitance sensor. While the total surface area doesn’t change when the sensor is stretched — how capacitance sensors normally work — it does bring the two layers of fabric closer together, changing the capacitance of the band in a proportional and measurable way, with the silicone pulling the sensor back into its original shape as tension relaxes. Wires can be attached to each end of the band with adhesive and a square of thermal film, making an ideal sensor to detect the subtlest of muscle movements.

Continue reading “A Flexible Sensor That Moves With You”