Improving More Leaf Design Flaws

[Daniel] was recently featured here for his work in improving the default charging mode for the Nissan Leaf electric vehicle when using the emergency/trickle charger included with the car. His work made it possible to reduce the amount of incoming power from the car, if the charging plug looked like it might not be able to handle the full 1.2 kW -3 kW that these cars draw when charging. Thanks to that work, he was able to create another upgrade for these entry-level EVs, this time addressing a major Leaf design flaw that is known as Rapidgate.

The problem that these cars have is that they still have passive thermal management for their batteries, unlike most of their competitors now. This was fine in the early ’10s when this car was one of the first all-electric cars to market, but now its design age is catching up with it. On long trips at highway speed with many rapid charges in a row the batteries can overheat easily. When this happens, the car’s charging controller will not allow the car to rapid charge any more and severely limits the charge rate even at the rapid charging stations. [Daniel] was able to tweak the charging software in order to limit the rapid charging by default, reducing it from 45 kW to 35 kW and saving a significant amount of heat during charging than is otherwise possible.

While we’d like to see Nissan actually address the design issues with their car designs while making these straighforward software changes (or at least giving Leaf owners the options that improve charging experiences) we are at least happy that there are now other electric vehicles in the market that have at least addressed the battery thermal management issues that are common with all EVs. If you do own a Leaf though, be sure to check out [Daniel]’s original project related to charging these cars.

Continue reading “Improving More Leaf Design Flaws”

’54 Motorcycle Saved By Electric Conversion

While it’s nice to be able to fully restore something vintage to its original glory, this is not always possible. There might not be replacement parts available, the economics of restoring it may not make sense, or the damage to parts of it might be too severe. [onyxmember] aka [Minimember Customs] was in this position with an old ’54 Puch Allstate motorcycle frame that he found with no engine, rusty fuel tank, and some other problems, so he did the next best thing to a full restoration. He converted it to electric.

This build uses as much of the original motorcycle frame as possible and [onyxmember] made the choice not to weld anything extra to it. The fuel tank was cut open and as much rust was cleaned from it as possible to make room for the motor controller and other electronics. A hub motor was laced to the rear wheel, and a modern horn and headlight were retrofitted into the original headlight casing. Besides the switches, throttle, and voltmeter, everything else looks original except, of course, the enormous 72V battery hanging off the frame where the engine used to be.

At a power consumption of somewhere between three and five kilowatts, [onyxmember] reports that this bike likely gets somewhere in the range of 55 mph, although he can’t know for sure because it doesn’t have a speedometer. It’s the best use of an old motorcycle frame we can think of, and we also like the ratrod look, but you don’t necessarily need to modify a classic bike for this. A regular dirt bike frame will do just fine.

Continue reading “’54 Motorcycle Saved By Electric Conversion”

Custom Drill Press Table Eliminates Hassles

Getting a perfect workshop together, with all the right tools, is a dream for many. A lot of us cobble together what we can with a dremel tool, a soldering iron, and whatever work surface happens to be available in the kitchen or spare bedroom. But even when we finally get a permanent garage or shop to work in, there are still some challenges to overcome with our workspaces. [Workshop From Scratch] was having issues with his drill press, and solved them with this custom build.

Rather than modify an existing press, he first welded a table together from scratch using square tube. From there he set about solving those issues. The first was having to make a large number of adjustments up and down when working on larger pieces. For that he added an electrically adjustable worktop which keeps him from having to make constant adjustments of the press itself. The second improvement over the standard press workspace was adding a cooling system for the cutting tools, saving himself money in bits and allowing quicker drilling.

The finished product looks professional thanks to a quality paint job and, of course, having all the right tools in the workshop in the first place to put something like this together. We all have an idea in our heads about the perfect workshop for our own needs, but don’t forget to think outside the box when it comes to building one yourself.

Continue reading “Custom Drill Press Table Eliminates Hassles”

This V8 Makes A Shocking Amount Of Power

As a work of art, solenoid engines are an impressive display of electromagnetics in action. There is limited practical use for them though, so usually they are relegated to that realm and remain display pieces. This one from [Emiel] certainly looks like a work of art, too. It has eight solenoids, mimicking the look and internal workings of a traditional V8.

There’s a lot that has to go on to coordinate this many cylinders. Like an internal combustion engine, it takes precise timing in order to make sure that the “pistons” trigger in the correct order without interfering with each other through the shared driveshaft. For that, [Emiel] built two different circuit boards, one to control the firing of each solenoid and another to give positional feedback for the shaft. That’s all put inside a CNC-machined engine block, complete with custom-built connecting rods and shafts.

If you think this looks familiar, it’s because [Emiel] has become somewhat of an expert in the solenoid engine realm. He started off with a how-to for a single piston engine, then stepped it up with a V4 design after that. That leaves us wondering how many pistons the next design will have. Perhaps a solenoid version of the Volkswagen W12?

Continue reading “This V8 Makes A Shocking Amount Of Power”

DIY Lawnmower Doesn’t Cut Grass Short

[nodemcu12ecanada] is serious about saving water, which is why they built this strange lawnmower that can cut grass taller.

Short lawns are one of those clever marketing victories, like convincing people to eat a lot of sugar, that’s been doing more harm than good ever since the victory was won. Short grass is weak grass, with shallow roots, weakness to weeds, and a lot of water requirement. On top of that the grass is always in a state of panic so it grows extra fast to get to a more “natural” height. It’s great if you want to sell fertilizer, seeds, and lawnmowers. Maybe not so great for the environment.

Most lawnmowers can’t even be set high enough for healthy grass so [nodemcu12ecanada] took three electric weed whackers and bolted them to an angle iron frame. It has a lot of advantages. It’s light. You don’t need to sharpen a blade. It’s quiet. It’s electric. It’s strange appearance will scare your neighbors off from borrowing any of your tools. We love it!

Solenoid Engine Adds Three “Pistons”

The earliest piston engines typically had only one cylinder, and at best, produced horsepower measured in single digits. But once you have a working engine, it’s a relatively short step to adding cylinders and increasing the power output. [Emiel] made a similar upgrade to one of his engines recently, upgrading it from one cylinder to four. But this isn’t an internal combustion engine, it gets its power from electric solenoids.

We featured his single-cylinder build about a month ago, and since then he’s been busy with this impressive upgrade. The new engine features four cylinders arranged in a V4 pattern. Of course, this greatly increases the mechanical complexity. To start, he had to machine a crankshaft to connect all four “pistons” to a shared output shaft. He also had to build a set of cams in order to time the firing of the cylinders properly, so they don’t work against one another.

The build is just as polished and impressive as the last, which is saying a lot. [Emiel] has a quality machine shop and built the entire motor from scratch, including winding the solenoids, machining the connecting rods and shafts, and building a very picturesque wooden base for the entire contraption to sit on. It’s definitely worth checking out.

Continue reading “Solenoid Engine Adds Three “Pistons””

Electric Dump Truck Produces More Energy Than It Uses

Electric vehicles are everywhere now. It’s more than just Leafs, Teslas, and a wide variety of electric bikes. It’s also trains, busses, and in this case, gigantic dump trucks. This truck in particular is being put to work at a mine in Switzerland, and as a consequence of having an electric drivetrain is actually able to produce more power than it consumes. (Google Translate from Portugese)

This isn’t some impossible perpetual motion machine, either. The dump truck drives up a mountain with no load, and carries double the weight back down the mountain after getting loaded up with lime and marl to deliver to a cement plant. Since electric vehicles can recover energy through regenerative braking, rather than wasting that energy as heat in a traditional braking system, the extra weight on the way down actually delivers more energy to the batteries than the truck used on the way up the mountain.

The article claims that this is the largest electric vehicle in the world at 110 tons, and although we were not able to find anything larger except the occasional electric train, this is still an impressive feat of engineering that shows that electric vehicles have a lot more utility than novelties or simple passenger vehicles.

Thanks to [Frisco] for the tip!