Rock Out While You Knock Out Germs

We don’t know about you, but we’re pretty tired of singing two rounds of “Happy Birthday” or counting Mississippi to 20 each time we wash our hands. It’s difficult to do it without thinking about the reason why, and that’s not good for positivity. If you’d rather have your spirits lifted every time you hit the sink, you need a better soundtrack.

[Deeplocal] made a soap dispenser that gathers one of your top 20 tunes from Spotify and plays it for 20 seconds while you lather. The best part is that the songs don’t start at 0:00 — the code is written to use the preview clip of each one, so you get the algorithmically-determined best part.

Scrubber is a pretty simple build that uses a Raspberry Pi Zero W and a speaker bonnet powered by a LiPo, but we dig it just the same. The switch is adaptable to pretty much any soap dispenser — just stick two pieces of copper tape where they’ll make contact when the pump is pushed down, and solder wires to them. Check out the demo after the break.

We’ve often wondered how much more water we’re using with all the increased hand-washing out there. Adjusting to this apocalypse is arduous for all of us, but the environment is still a concern, so try to remember to turn the water off while you’re not using it. Is anyone out there working on an easy way to adapt home faucets to add motion or foot control? Because that would be awesome right about now.

The nice thing about Scrubber is that you can focus on washing your hands and doing so properly. If you’d rather watch a digital hourglass to pass the time, light up your lockdown lavatory lifestyle with LEDs.

Continue reading “Rock Out While You Knock Out Germs”

Can You Print With Highlighter Ink?

With huge swathes of people either out of work or working from home, many are now attempting all manner of exciting or silly projects in their downtime. [Emily Velasco] is no exception. She decided to explore the feasability of printing with highlighter ink.

It’s a messy business. Wear gloves.

The hack starts with a rather ancient inkjet printer, so old that it works with tractor feed paper. [Emily] set about gutting several highlighter pens and squeezed out the ink reservoirs into a ladle. The printer’s ink cartridge was then filled with the fluid, and a test print was fired off. Upon initial extraction, it appears blank. However, with the aid of a UV light, the printed pattern is revealed. It appears that the inkjet is printing a very faint image, such that the system almost works as an “invisible ink”.

It’s a fun little hack with an old printer, made easier as it lacks the DRM of newer models. It’d probably be quite achievable with a dot-matrix, too. If you’re similarly tinkering in the innards of your peripherals, be sure to let us know. Video after the break.

Continue reading “Can You Print With Highlighter Ink?”

Hackaday Links: March 29, 2020

It turns out that whacking busted things to fix them works as well on Mars as it does on Earth, as NASA managed to fix its wonky “mole” with a little help from the InSight lander’s robotic arm. Calling it “percussive maintenance” is perhaps a touch overwrought; as we explained last week, NASA prepped carefully for this last-ditch effort to salvage the HP³ experiment, and it was really more of a gentle nudge that a solid smack with the spacecraft’s backhoe bucket. From the before and after pictures, it still looks like the mole is a little off-kilter, and there was talk that the shovel fix was only the first step in a more involved repair. We’ll keep an ear open for more details — this kind of stuff is fascinating, and beats the news from Earth these days by a long shot.

Of course, the COVID-19 pandemic news isn’t all bad. Yes, the death toll is rising, the number of cases is still growing exponentially, and billions of people are living in fear and isolation. But ironically, we’re getting good at community again, and the hacker community is no exception. People really want to pitch in and do something to help, and we’ve put together some resources to help. Check out our Hackaday How You Can Help spreadsheet, a comprehensive list of what efforts are currently looking for help, plus what’s out there in terms of Discord and Slack channels, lists of materials you might need if you choose to volunteer to build something, and even a list of recent COVID-19 Hackaday articles if you need inspiration. You’ll also want to check out our calendar of free events and classes, which might be a great way to use the isolation time to better your lot.

Individual hackers aren’t the only ones pitching in, of course. Maybe of the companies in the hacker and maker space are doing what they can to help, too. Ponoko is offering heavy discounts for hardware startups to help them survive the current economic pinch. They’ve also enlisted other companies, like Adafruit and PCBWay, to join with them in offering similar breaks to certain customers.

More good news from the fight against COVID-19. Folding@Home, the distributed computing network that is currently working on folding models from many of the SARS-CoV-2 virus proteins, has broken the exaFLOP barrier and is now the most powerful computer ever built. True, not every core is active at any given time, but the 4.6 million cores and 400,000-plus GPUs in the network pushed it over from the petaFLOP range of computers like IBM’s Summit, until recently the most powerful supercomputer ever built. Also good news is that Team Hackaday is forming a large chunk of the soul of this new machine, with 3,900 users and almost a million work units completed. Got an old machine around? Read Mike Sczcys’ article on getting started and join Team Hackaday.

And finally, just because we all need a little joy in our lives right now, and because many of you are going through sports withdrawal, we present what could prove to be the new spectator sports sensation: marble racing. Longtime readers will no doubt recognize the mad genius of Martin and his Marble Machine X, the magnificent marble-dropping music machine that’s intended as a follow-up to the original Marble Machine. It’s also a great racetrack, and Martin does an amazing job doing both the color and turn-by-turn commentary in the mock race. It’s hugely entertaining, and a great tour of the 15,000-piece contraption. And when you’re done with the race, it’s nice to go back to listen to the original Marble Machine tune — it’s a happy little song for these trying times.

Custom Drill Press Table Eliminates Hassles

Getting a perfect workshop together, with all the right tools, is a dream for many. A lot of us cobble together what we can with a dremel tool, a soldering iron, and whatever work surface happens to be available in the kitchen or spare bedroom. But even when we finally get a permanent garage or shop to work in, there are still some challenges to overcome with our workspaces. [Workshop From Scratch] was having issues with his drill press, and solved them with this custom build.

Rather than modify an existing press, he first welded a table together from scratch using square tube. From there he set about solving those issues. The first was having to make a large number of adjustments up and down when working on larger pieces. For that he added an electrically adjustable worktop which keeps him from having to make constant adjustments of the press itself. The second improvement over the standard press workspace was adding a cooling system for the cutting tools, saving himself money in bits and allowing quicker drilling.

The finished product looks professional thanks to a quality paint job and, of course, having all the right tools in the workshop in the first place to put something like this together. We all have an idea in our heads about the perfect workshop for our own needs, but don’t forget to think outside the box when it comes to building one yourself.

Continue reading “Custom Drill Press Table Eliminates Hassles”

NIH Approved 3D-Printed Face Shield Design For Hospitals Running Out Of PPE

As the world faces a pandemic of monumental proportions, hospitals have been hit hard. The dual problems of disrupted manufacturing and supply chains and huge spikes in demand have led to many medical centres running out of protective gear. Makers have stepped up to help in many ways by producing equipment, with varying results. [Packy] has shared a link to a 3D-printable face shield that, unlike some designs floating around, is actually approved by the National Institute of Health in the USA.

The shield consists of a 3D printed headband, which is then coupled with a transparent piece of plastic for the face shield itself. This can be lasercut, or sourced from a document cover or transparency sheet. The design is printable in PLA or a variety of other common materials, and can be assembled easily with office supplies where necessary.

The design is available from the NIH here. (Update: 4/1/2020 here’s an alternate link as original link seems to be suffering from heavy server load) For those eager to help out, it’s important to do so in an organised fashion that doesn’t unduly take resources away from healthcare professionals trying to get an important job done. We’ve seen other hacks too, such as these 3D printed ventilator components being rushed into service in Italy. 

Pumping Concrete

Due to social distancing, gym rats throughout the world are turning everyday objects into exercise equipment to keep up the routine without actually hitting the gym. A particularly pleasing version of this are these concrete dumbbells whipped up by the unfortunately named hacker [ShitnamiTidalWave].

If you happen to have half a bag of concrete — quick set or otherwise — out in the shed you can follow the lead on this one. But even if you’re not the kind of person who has “arm day” on your calendar (most of us here in the Hackaday bunker do not) this hack is still worth your time. Mold making is one of the uber-useful skills you should have in your hacker toolkit and [ShitnamiTidalWave] has done both an excellent job of building a mold, and of explaining the process.

Raw material for this one couldn’t be easier; each mold is made out of plywood, 2×4 stud, and nails, along with handles made of 3/4″ PVC pipe. The studs were ripped down and used to create the 45 degree chamfers at each edge. Mold-making veterans will tell you that release agent is a must and in this case rubbing the insides of the molds with wax made it a snap to pry the wooden forms off of the set concrete.

Concrete has a tendency to crack as it cures so if you’re casting large pieces like this touch-sensitive concrete countertop you might want to throw in some fiber reinforcement to the mix. If you’re keen on seeing some of the more impressive mold-making skills at work, check out how metal parts are cast from 3D-printed molds and how a master duplicates parts using silicone molds.

[via r/DIY]

How To Try Generative Optimization At Home

Chairs, spokes on a wheel, bridges, and all kinds of other load-bearing objects are designed such that material is only present where it is needed. There’s a process by which the decisions about how much material to put and where is determined by computer, and illustrating this is [Adam Bender]’s short primer on how to use generative optimization in Autodesk’s Fusion 360 (which offers a variety of free licenses) using a wheel as an example.

Things start with a solid object and a definition of the structural loads expected. The computer then simulates the force (or forces) involved, and that simulation can be used to define a part that only has material where it’s really needed. The results can be oddly organic looking, and this process has been used to optimize spacebound equipment where every gram counts.

It’s far from an automated process, but it doesn’t look too difficult to navigate the tools for straightforward designs. [Adam] cautions that one should always be mindful of the method of manufacturing when designing the part’s final form, which is always good advice but especially true when making oddball shapes and curves.  To see the short process in action, watch the video embedded below.

Continue reading “How To Try Generative Optimization At Home”