Alarm System Upgrade Tips The Functionality Scale

Residential-grade commercial alarm systems are good at a few things but terrible at others, like keeping pace with telephone technology. So what to do when a switch to VOIP renders your alarm system unable to call in reinforcements? Why not strip out the old system and roll your own value-added alarm and home automation system?

Generally, the hardest part about installing an alarm system is running the wires to connect sensors to the main panel, so [Bill Dudley] wisely chose to leverage the existing wiring and just upgrade the panel. And what an upgrade it is. [Bill]’s BOM reads like a catalog page from SparkFun or Adafruit – Arduino MEGA 2560, Ethernet shield, a sound board, stereo amplifier, X10 interface, and a host of relays, transformers, and converters. [Bill] is serious about redundancy, too – there’s an ESP8266 to back up the wired Ethernet, and a DS3231 RTC to keep the time just in case NTP goes down. The case is a bit crowded, but when closed up it’s nicely presentable, and the functionality can’t be beat.

Rehabilitating old alarm systems is a popular project that we’ve covered plenty of times, like this Arduino upgrade for a DSC 1550 panel. But we like the way [Bill] really went the extra mile to build add value to his system.

ESP8266 Based Irrigation Controller

If you just want to prevent your garden from slowly turning into a desert, have a look at the available off-the-shelf home automation solutions, pick one, lean back and let moisture monitoring and automated irrigation take over. If you want to get into electronics, learn PCB design and experience the personal victory that comes with all that, do what [Patrick] did, and build your own ESP8266 based irrigation controller. It’s also a lot of fun!

[Patrick] already had a strong software background and maintains his own open source home automation system, so building his own physical hardware to extend its functionality was a logical step. In particular, [Patrick] wanted to add four wirelessly controlled valves to the system.

Continue reading “ESP8266 Based Irrigation Controller”

Home Automation And Monitoring With Edison

[Tyler S.] has built a home automation and monitoring system dubbed ED-E, or Eddie. The name is an amalgam of its two main components, the Edison board from Intel, and some ESP8266 modules.

ED-E’s first job is to monitor the house for extraordinary situations. It does this with a small suite of sensors. It can detect flame, sound, gas, air quality, temperature, and humidity. With this array, it’s probably possible to capture every critical failure a house could experience, from burglars to water pipe leaks. It uploads all this data to Intel’s Analytics Cloud where we assume something magical happens to it.

ED-E can also sense the state of other things in the house, such as doors, with remote sensors. The door monitors, for example, are an ESP8266 and a momentary switch in a plastic case with a lithium ion battery. We’re not sure how long they’ll run, but presumably the Analytic Cloud will let us know if the battery is low via the aforementioned magic.

8728871444406519500_smallLastly, ED-E, can turn things in the house on and off. This is accomplished in 100% Hackaday-approved (if not UL-approved) style with a device that appears to be a lamp cable fed into a spray painted Altoids tin.

ED-E wins some style points for its casing. It’s a very well executed hack, and we’d not previously considered just how many awful situations can be detected with off the shelf sensors.

CarontePass: Open Access Control For Your Hackerspace

A problem faced by all collaborative working spaces as they grow is that of access control. How can you give your membership secure access to the space without the cost and inconvenience of having a keyholder on site at all times.

[Torehc] is working on solving this problem with his CarontePass RFID access system, at the Kreitek Makerspace (Spanish, Google Translate link) in Tenerife, Canary Islands.

Each door has a client with RFID readers, either a Raspberry Pi or an ESP8266, which  connects via WiFi to a Raspberry Pi 2 server running a Django-based REST API. This server has access to a database of paid-up members and their RFID keys, so can issue the command to the client to unlock the door. The system also supports the Telegram messaging service, and so can be queried as to whether the space is open and how many members are in at a particular time.

All the project’s resources are available on its GitHub repository, and there is a project blog (Spanish, Google Translate link) with more details.

This is a project that is still in active development, and [Torehc] admits that its security needs more work so is busy implementing HTTPS and better access security. As far as we can see through the fog of machine translation at the moment it relies on the security of its own encrypted WiFi network, so we’d be inclined to agree with him.

This isn’t the first hackerspace access system we’ve featured here. The MakerBarn in Texas has one using the Particle Photon, while the Lansing Makers Network in Michigan have an ingenious mechanism for their door, and the Nesit hackerspace in Connecticut has a very fancy system with video feedback. How does your space solve this problem?

The HackadayPrize2016 is Sponsored by:

Neopixel Bedroom Clock Uses ESP8266

When [Vance] joined his local hackspace he sought a project to take advantage of the new tools at his disposal. His solution: an attractive LED colour wheel clock using neopixels driven by an NTP-synchronised ESP8266. Each neopixel illuminates a segment of the clock face through frosted diffuser, the hours are tracked as a red light, the minutes blue, and the seconds green. As each color passes another they are mixed, creating a changing colorscape. 12 neopixels are used, and the whole clock is mounted in a laser cut enclosure.

After an initial prototype on a piece of stripboard he created a PCB in KiCad, complete with space for a 3.3v regulator. This and the source code can be found on the project’s GitHub repository.

The resulting clock is a very high quality build as well as being attractive and useful in its own right. The video shows the color mixing in action, or at least the cyan and yellow products of it. Continue reading “Neopixel Bedroom Clock Uses ESP8266”

Bike Power Meter With Crank-mounted WiFi Strain Gauges

In any motorsport, the more you know about how the engine is performing, the better a driver is likely to do in a race. That holds for bicycles, too, where the driver just happens to also be the engine. There are plenty of cheap bike computers on the market, but the high-end meters that measure power output are a bit pricey. [chiprobot] is looking to change that with a home-brew, low-cost bike power meter.

The project still appears to be in the proof-of-concept phase, but it’s an interesting concept for sure. The stock crank arms are carefully fitted with two pairs of tiny strain gauges. The gauges are wired in a Wheatstone bridge arrangement, with one gauge in each pair mounted perpendicular to the force on the crank to serve as a static reference. Output from the bridge is fed to an HX711 instrumentation amplifier. The demo video below shows how sensitive the bridge and 24-bit amp are.

The goal is to send crank data to a handlebar-mounted UI via WiFi with a pair of ESP8266 modules. We like the idea of a bicycle area network, but [chiprobot] has his work cut out for him in terms of ruggedizing and weatherproofing all this gear. We’ll be sure to keep an eye on this project. In the meantime, there’s plenty to learn from this bike power meter project we covered last year.

Continue reading “Bike Power Meter With Crank-mounted WiFi Strain Gauges”

Hacklet 102 – Laundry Projects

Ah laundry day. The washing machine, the dryer, the ironing, and the folding. No one is a fan of doing laundry, but we (I hope) are all fans of having clean clothing. Hackers, makers, and engineers are always looking for ways to make a tedious task a bit easier, and laundry definitely is one of those tedious tasks. This week we’re checking out some of the best laundry projects on Hackaday.io!

laundrifyWe start with [Professor Fartsparkles] and Laundrify. Anyone who’s shared a washer and dryer with house or apartment mates will tell you how frustrating it can be. You bring your dirty laundry downstairs only to find the machines are in use. Wait too long, and someone has jumped in front of you. Laundrify fixes all that. Using a current sensor, Laundrify can tell if a machine is running. An ESP8266 monitors the current sensor and sends data up to the cloud – or in this case a Raspberry Pi. Users access this laundry as a service system by opening up a webpage on the Pi. The page includes icons showing the current status of each machine. If everything is in use, the users can join a queue to be notified when a machine is free.

 

borgmachineNext up is [Jose Ignacio Romero] with Borg Washing Machine. [Jose] came upon a washer that mechanically was perfect. Electrically was a different story. The biggest issue was the failing mechanical timer, which kept leaving him with soapy wet clothing. Washing machine timers boil down to mechanically timed multipole switches. They’re also expensive to replace. [Jose] did something better – he built an electronic controller to revitalize his washer. The processor is a PIC16F887. Most of the mains level switching is handled by relays. [Jose] programmed the new system using LDmicro, which is a ladder logic implementation for microcontrollers. For the uninitiated, ladder logic is a programming language often used on industrial Programmable Logic Controller (PLC) systems. The newly dubbed borg machine is now up and running better than ever.

 

hackitgreen

Next we have [Michiel Spithoven] with Hot fill washing machine. In North America, most washing machines connect to hot and cold water supplies. Hot water comes from the home’s water heater. This isn’t the case in The Netherlands, where machines are designed to use electricity to heat cold water. [Michiel] knew his home’s water heater was more efficient than the electric heater built into his machine. [Michiel]  hacked his machine green by building an automated mixing manifold using two solenoid valves and a bit of copper pipe. The valves are controlled by a PIC microprocessor which monitors the temperature of the water entering the machine. The PIC modulates the valves to keep the water at just the right temperature for [Michiel’s] selected cycle. [Michiel] has been tracking the efficiency of the new system, and already has saved him €97!

 

laundrespFinally we have [Mark Kuhlmann] with LaundrEsp. [Mark’s] washing machine has a nasty habit of going off-balance and shutting down. This leaves him with soggy clothing and lost time re-running the load. [Mark] wanted to fix the problem without directly modifying his machine, so he came up with LaundrEsp. When the machine is running normally, a “door locked” light is illuminated on the control panel. As soon as the washer shuts down – due to a normal cycle ending or a fault, the door unlocks and the light goes out. [Mark] taped a CdS light detecting resistor over the light and connected it to an ESP8266. A bit of programming with Thinger.io, and [Mark’s] machine now let’s him know when it needs attention.

If you want to see more laundry projects check out our brand new laundry project list! If I missed your project, don’t take me to the cleaners! Drop me a message on Hackaday.io, and I’ll have your project washed, folded, and added to the list in a jiffy. That’s it for this week’s Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!