Gorgeous Engineering Inside Wheels Of A Robotic Trail Buddy

Robots are great in general, and [taylor] is currently working on something a bit unusual: a 3D printed explorer robot to autonomously follow outdoor trails, named Rover. Rover is still under development, and [taylor] recently completed the drive system and body designs, all shared via OnShape.

Rover has 3D printed 4.3:1 reduction planetary gearboxes embedded into each wheel, with off the shelf bearings and brushless motors. A Raspberry Pi sits in the driver’s seat, and the goal is to use a version of NVIDA’s TrailNet framework for GPS-free navigation of paths. As a result, [taylor] hopes to end up with a robotic “trail buddy” that can be made with off-the-shelf components and 3D printed parts.

Moving the motors and gearboxes into the wheels themselves makes for a very small main body to the robot, and it’s more than a bit strange to see the wheel spinning opposite to the wheel’s hub. Check out the video showcasing the latest development of the wheels, embedded below.

Continue reading “Gorgeous Engineering Inside Wheels Of A Robotic Trail Buddy”

Earth Rovers Explore Our Own Planet

While Mars is currently under close scrutiny by NASA and other space agencies, there is still a lot of exploring to do here on Earth. But if you would like to explore a corner of our own planet in the same way NASA that explores Mars, it’s possible to send your own rover to a place and have it send back pictures and data for you, rather than go there yourself. This is what [Norbert Heinz]’s Earth Explorer robots do, and anyone can drive any of the robots to explore whatever locations they happen to be in.

A major goal of the Earth Explorer robot is to be easy to ship. This is a smaller version of the same problem the Mars rovers have: how to get the most into a robot while having as little mass as possible. The weight is kept to under 500g, and the length, width, and height to no more than 90cm combined. This is easy to do with some toy cars modified to carry a Raspberry Pi, a camera, and some radios and sensors. After that, the robots only need an interesting place to go and an Internet connection to communicate with Mission Control.

[Norbert] is currently looking for volunteers to host some of these robots, so if you’re interested head on over to the project page and get started. If you’d just like to drive the robots, though, you can also get your rover fix there as well. It’s an interesting project that will both get people interested in exploring Earth and in robotics all at the same time. And, if you’d like to take the rover concept beyond simple exploration, there are other machines that can take care of the same planet they explore.

Continue reading “Earth Rovers Explore Our Own Planet”

Hey NASA, Do You Want Your Stuff Back?

What would you do if you found hidden away artifacts of aerospace technology from the Apollo era?

You call NASA.

Two hulking computers — likely necessitating the use of a crane to move them — and hundreds of tape reels were discovered in the basement of a former IBM engineer by their heir and a scrap dealer cleaning out the deceased’s home. Labels are scarce, and those that are marked are mostly from the late 1960s through the mid 1970s, including data from the Pioneer 8 to 11 missions, as well as the Helios missions.

Continue reading “Hey NASA, Do You Want Your Stuff Back?”

Electronics That Can Handle The Pressure

Deep-sea exploration is considered as a relatively new area of research and the electronics involved has to be special in order to survive some of the deepest parts of the ocean. Pressure Tolerant Electronics is a new subject and has its own challenges as explained by [Nic Bingham] of the Schmidt Ocean Institute.

[Nic Bingham] was one of the speakers at the Supplyframe office for ‘The Hardware Developers Didactic Galactic’ held April 20th 2017. His talks was based on his experience with ambient-pressure electronics and autonomous solar-diesel power plants at the Antarctic plateau. Due to high pressures at large depths, the selection of components becomes critical. Low density components such as electrolytic capacitors have either air or fluids which are susceptible to compression under water and prone to damage. Since pressure tolerance is not part of most datasheet figures, component selection becomes difficult and subject to prior testing.

There are other challenges as well as [Nic Bingham] explains that revolve around the procurement of special parts as well as spare for older components. In his whitepaper, [Nic Bingham] chalks out everything from the development process to different testing methodologies and even component selection for such applications.

A video of his talk is worth a watch along with the nice writeup by [Chris Gammell] on his first hand experience of the lecture. For those who are looking for something on a budget, the underwater glider project is a good start. Continue reading “Electronics That Can Handle The Pressure”

PUFFER: A Smartphone-Sized Planetary Explorer

Is there room on Mars and Europa for cute robots? [NASA] — collaborating with [UC Berkley] and [Distant Focus Corporation] — have the answer: PUFFER, a robot inspired by origami.

PUFFER — which stands for Pop-Up Flat-Folding Explorer Robot — is able to sense objects and adjust its profile accordingly by ‘folding’ itself into a smaller size to fit itself into nooks and crannies. It was designed so multiple PUFFERs could reside inside a larger craft and then be deployed to scout otherwise inaccessible terrain. Caves, lava tubes and shaded rock overhangs that could shelter organic material are prime candidates for exploration. The groups of PUFFERs will send the collected info back to the mother ship to be relayed to mother Earth.

We’ve embedded the video of the bot folding it’s wheels down to pass a low-bridge. You can get a view of the wider scope of functionality for the collection of demos on the project page.

Continue reading “PUFFER: A Smartphone-Sized Planetary Explorer”

Highlights From Robotic Shipwreck Exploration

DIY Research Vessel in use, while ROV is busy below. [Source: NYT]
DIY Research Vessel in use, while ROV is busy below. [Source: NYT]
OpenROV shared the results of their June 2016 underwater expedition to locate and robotically explore the wreck of the S.S. Tahoe, currently sitting at a depth of 150m in Lake Tahoe. Back in 1940 the ship was intentionally scuttled in shallow water, but unexpectedly slid to a much deeper depth. OpenROV used a modified version of their new Trident design to dive all the way down to the wreck and take a good look at things, streaming it over the internet in the process.

We previously covered the DIY research vessel that was designed and created as a floating base station for the ROV while it located and explored the wreck, and now the results are in! The video highlights of the expedition are below, as is a video tour of the ROV used and the modifications required to enable it to operate at 150m.

Continue reading “Highlights From Robotic Shipwreck Exploration”

Foster A Robot, Explore Your Home Planet

The robots we’ve sent to explore other worlds in our stead are impressive feats of engineering. But stuck at the bottom of our gravity well as we are, they are fantastically expensive ventures that are out of reach of the DIY community. There’s still plenty to explore right in your own backyard, though, and this robot needs your help to explore planet Earth.

The project is called RoboSpatium, and it’s the brainchild of [Norbert Heinz]. The idea is a little like HitchBot except it will be sent from host to host by mail. (And it’s an actual robot, and not just brains in a bucket.) Hopefully each host will have something interesting for the robot to do for the 24 hours allotted, like explore a local landmark, get a robot-eye view of the goings on in a hackerspace, or just watch the sunset in some beautiful spot. Project participants will get to drive the robot via a web interface and do a little virtual exploration of a part of the world they might never otherwise get to see.

We gather that the robot in the video below is only a prototype at this point, and that the sensor suite and mechanicals have yet to be sorted out. Hackaday regulars will no doubt know [Norbert] better as the excellently accented [HomoFaciens], creator of dumpster-sourced CNC machines, encoders made from tin can lids and wheels of resistors, and a potentially self-replicating CNC plotter. [Norbert] has the hacker chops to pull this off, and we think it’s a pretty neat idea with the potential to engage and educate a lot of people. We think it could do with a little support from the Hackaday community.

Continue reading “Foster A Robot, Explore Your Home Planet”