Simple Plasma Cutter Collision Detection System

Machine tools often have powerful drive motors, allowing them to work quickly and accurately to get the job done fast. However, this can cause major damage if the tool head collides with an unexpected object. To protect against such occurances, [Xnaron] developed a simple system to shut down his plasma cutter in the event of a crash.

The system consists of a 3D printed collar that fits around the plasma cutting torch. The collar has two mating parts, which are held together with three magnets and three ball bearings to act as a key, maintaining the correct orientation. Three limit switches are then fitted, held closed by the two mating halves. When the torch collides with an object, this causes the magnetic coupling to seperate, triggering one or more of the limit switches, and shutting down the machine safely.

Video of an unplanned collision shows the device working well. It’s a neat solution that could probably be adapted to other types of machine tool that don’t experience high lateral forces. Of course, if you don’t yet have a plasma cutter, you can always make your own. Video after the break.

Continue reading “Simple Plasma Cutter Collision Detection System”

CNC Plasma Cutter Filter Gets The Slag Out

No matter what kind of tools and materials you use in your shop, chances are pretty good that some process is going to release something that you don’t want to breathe. Table saw? Better deal with that wood dust. 3D-printer? We’ve discussed fume control ad nauseam. Soldering? It’s best not to inhale those flux fumes. But perhaps nowhere is fume extraction more important than in the metal shop, where vaporized bits of metal can wreak respiratory havoc.

Reducing such risks was [Shane Wighton]’s rationale behind this no-clean plasma cutter filter. Rather than a water table to collect cutting dross, his CNC plasma cutter is fitted with a downdraft table to suck it away. The vivid display of sparks shooting out of the downdraft fans belied its ineffectiveness, though. [Shane]’s idea is based on the cyclonic principle common to woodshop dust collectors and stupidly expensive vacuum cleaners alike. Plastic pipe sections, split in half lengthwise and covered in aluminum tape to make them less likely to catch on fire from the hot sparks, are set vertically in the air path. The pipes are arranged in a series of nested “S” shapes, offering a tortuous path to the spark-laden air as it exits the downdraft.

The video below shows that most of the entrained solids slow down and drop to the bottom of the filter; some still pass through, but testing with adhesive sheets shows the metal particles in the exhaust are much reduced. We like the design, especially the fact that there’s nothing to clog or greatly restrict the airflow.

Looking for more on CNC plasma cutter builds? We’ve got you covered, from just the basics to next-level.

Continue reading “CNC Plasma Cutter Filter Gets The Slag Out”

Plasma Cutter + Sharpie Is Surprisingly Useful

What we want is a Star Trek-style replicator. What we have are a bunch of different machines that can spew out various 2D and 3D shapes. For the foreseeable future, you’ll still need to post-process most of what you build in some way. [Stuff Made Here] had a challenge. He often uses his plasma cutter to create complex sheet metal items. But the cutter is two dimensional so the piece doesn’t look right until you bend it at just the right places. If you are doing a simple box, it is easy to figure out, but getting just the right spot on a complex bend can be a challenge. His answer? Attach a marker to the gantry so the machine can draw the lines right on the sheet metal.

Sounds easy and if you were willing to do a pen pass separately and then remove the pen and do the plasma cutting it would be relatively easy. However, that seems kind of crude. Mounting it permanently requires a way to raise it up when cutting — and it needs to survive the noisy environment near the torch. The pen would also dry out if you left in uncapped. The answer was using a permanent marker with a click retractor and let the mechanism extend and retract the pen point on command.

Continue reading “Plasma Cutter + Sharpie Is Surprisingly Useful”

Motorizing A Plasma Cutter On The Cheap

A hand-held plasma cutter is an excellent tool to have if you are working with sheet metal, but it’s not particularly well suited to making long or repetitive cuts. Which is why [workshop from scratch] worked his usual scrapheap magic and built his own motorized track for making perfectly straight cuts.

Most of the frame, and even the small truck that rides on it, is made out of square stock in various sizes. A couple of bearings are enough to make sure the movement is smooth and doesn’t have too much slop. Motion is provided by a long threaded rod and two nuts, which are welded to the side of the truck.

If you had the patience (and forearm strength) you could just put a crank on the rod and be done with it, but in this case [workshop from scratch] used the motor, gearbox, and chuck from an old electric drill to grab onto the threaded rod and do the spinning for him. He rigged up an enclosure for the side of the rack that holds the motor, DC power supply, and motor controller, along with a couple of switches and a knob to control the speed.

A modification allows him to enable the plasma cutter with one of the switches on the panel, which gives the setup a much more complete feel than just putting a zip tie on the trigger. With this design, the plasma cutter itself can still be removed from the mount and used normally. You can even remove the motorized component with a few bolts if you just wanted to do manual cuts on the bed.

In the video after the break, the keen-eyed viewer may notice a few familiar pieces of gear in the background, such as the hydraulic bench vise we covered earlier in the year. As the name of the channel implies, [workshop from scratch] is all about building the workshop tools that many take for granted, and they’ve all been phenomenally fascinating projects. While we admire the gumption it takes to try and build a lathe out of scrap granite slabs, there’s something to be said for DIY tools that end up looking nearly as good as commercial offerings.

Continue reading “Motorizing A Plasma Cutter On The Cheap”

Make Your Own Plasma Cutter

Of all the tools that exist, there aren’t many more futuristic than the plasma cutter, if a modern Star Wars cosplay if your idea of futuristic. That being said, plasma cutters are a powerful tool capable of making neat cuts through practically any material, and there are certainly worst ways to play with high voltage.

Lucky enough, [Plasanator] posted their tutorial for how to make a plasma cutter, showing the steps through which they gathered parts from “old microwaves, stoves, water heaters, air conditioners, car parts, and more” in the hopes of creating a low-budget plasma cutter better than any on YouTube or from a commercial vendor.

The plasma cutter does end up working up quite an arc, with the strength to slice through quarter-inch steel “like a hot knife through butter”.

Its parts list and schematic divide the systems into power control, high current DC, low voltage DC, and high voltage arc start:

  • The power control contains the step down transformer and contactor (allows the DC components to come on line)
  • The high current DC contains the bridge rectifier, large capacitors, and reed switch (used as a current sensor to allow the high voltage arc to fire right when the current starts to travel to the head, shutting down the high voltage arc system when it’s no longer necessary)
  • The low voltage DC contains the power switch, auto relays, 12V transformer, 120V terminal blocks, and a terminal strip
  • The high voltage arc start contains the microwave capacitor and a car ignition coil

At the cutting end, 13A is used to cut through quarter-inch steel. Considering the considerably high voltage cutter this is, a 20 A line breaker is needed for safety.

Once the project is in a more refined state, [Plasanator] plans on hiding components like the massive capacitors and transformer behind a metal or plastic enclosure, rather than have them exposed. This is mainly for safety reasons, although having the parts exposed is evocative of a steampunk aesthetic.

In several past designs, stove coils were used as current resistors and a Chevy control module as the high voltage arc start. The schematic may have become more refined with each build, but [Plasanator]’s desire to use whatever components were available certainly has not disappeared.

Continue reading “Make Your Own Plasma Cutter”

A CNC Plasma Cutter Table, From The Shop Floor Up

Some projects are simple, some focus on precision and craftsmanship, and some are more of the quick-and-dirty variety. This home-built CNC plasma cutter table seems to follow a “go big or go home” philosophy, and we have to say we’re mighty impressed by the finished product.

For those who follow [Bob]’s “Making Stuff” YouTube channel, this build has been a long time coming. The playlist below has eight videos that cover the entire process from cutting the first tubes of the welded frame to the initial test cuts with the finished machine. [Bob] took great pains to make the frame as square and flat as possible, to the extent of shimming a cross member to correct a 0.030″ misalignment before welding. He used good-quality linear rails for each axis, and hefty NEMA 23 steppers. There were a few false starts, like the water pan that was going to be welded out of five separate pieces of steel until the metal shop guys saved the day with their press brake. In the end, the machine turned out great; with a build cost of $2000 including the plasma cutter it’s not exactly cheap, but it’s quite a bargain compared to similar sized commercial machines.

We think the video series is a great guide for anyone looking to make a CNC plasma table. We’ve seen builds like this before, including [This Old Tony]’s CNC router. Watching these builds gives us the itch to get into the shop and start cutting metal. Continue reading “A CNC Plasma Cutter Table, From The Shop Floor Up”

Plasma Cutter Jig Notches Tubing Quickly And Cleanly

It may be [MakeItExtreme]’s most ambitious build to date. There are a lot of moving parts to this plasma cutter tubing notcher, but it ought to make a fine addition to the shop and open up a lot of fabrication possibilities.

We have to admit to a certain initial bafflement when watching the video below for the first time. We can usually see where [MakeItExtreme]’s builds are going right from the first pieces of stock that get cut, but the large tube with the pressed-in bearing had us scratching our heads. The plan soon became clear — a motorized horizontal rotary table with a hollow quill for the plasma torch leads. There’s a jig for holding the torch itself that can move in and out relative to the table. Cams made of tube sections can be bolted to a fixed platen; a cam follower rides on the cams and moves the torch in and out as the table rotates. This makes the cuts needed to properly fit tubes together — known as fish mouth cuts or saddle cuts. The cams can be removed for straight cuts, and the custom pipe vise can be adjusted to make miter cuts.

All in all a sturdy and versatile build that ought to enable tons of new projects, especially when teamed up with [MakeIt Extreme]’s recent roll bender.

Continue reading “Plasma Cutter Jig Notches Tubing Quickly And Cleanly”