Livestreaming Backpack Takes Streaming On-The-Go

Anyone who’s anyone on the internet these days occasionally streams content online. Whether that’s the occasional livestream on YouTube or an every day video game session on Twitch, it’s definitely a trend that’s here to stay. If you want to take your streaming session on the go, though, you’ll need some specialized hardware like [Melissa] built into this livestreaming backpack.

[Melissa] isn’t actually much of a streamer but built this project just to see if it could be done. The backpack hosts a GoPro camera with a USB interface, mounted on one of the straps of the pack with some 3D printed parts, allowing it to act as a webcam. It is plugged into a Raspberry Pi which is set up inside the backpack, and includes a large heat sink to prevent it from overheating in its low-ventilation environment. There’s also a 4G modem included along with a USB battery pack to keep everything powered up.

The build doesn’t stop at compiling hardware inside a backpack, though. [Melissa] goes into detail on the project’s page about how to get all of the hardware to talk amongst themselves and where the livestream is setup as well. If you’d like a more permanently-located streaming setup with less expensive hardware, we have seen plenty of builds like this which will get the job done as well.

GCore: Make Portable Devices With Less Frustration

[Dan Julio]’s gCore (short for Gadget Core) is aimed at making GUI-based portable and rechargeable gadgets much easier to develop. gCore is the result of [Dan]’s own need for a less tiresome way to develop such hardware.

A touchscreen is great, but high-quality power control and charging features are what really make a portable device sing.

[Dan] found that he seemed to always be hacking a lot of extra circuitry into development boards just to get decent power management and charge control. To solve this, he designed his own common hardware platform for portable gadgets and the gCore was born.

While the color touchscreen is an eye-catching and useful addition, the real star of his design is the power management and charging features. Unlike most development hardware, the gCore intelligently shares load power with charging power. Power on and power off are also all under software control.

Sound intriguing? That’s not all the gCore has to offer, and you can learn more from the project page at hackaday.io (which has a more in-depth discussion of the design decisions and concept.) There are also some additional photos and details on [Dan]’s website.

[Dan] is no stranger to developing hardware. The tcam-mini thermal imager (and much more) is his work, and we have no doubt the gCore’s design and features are informed directly by [Dan]’s actual, practical development needs.

Portable 3D Printer Gets Even Smaller, Faster, Better

How do you improve on a fast, capable 3D printer that sports an innovative design and is portable enough to fit in a printer spool box? Judging by what went into the Positron V3 portable printer, (video, embedded below) it takes a lot of hard work and an unwillingness to settle for compromise designs. Plus a few lucky breaks and some design wizardry.

When we first reported on [Kralyn]’s innovative “Positron” printer, its chief selling points were its portability and unique layout. With a fold-down Z-axis and a CoreXY-style drive in the base, plus an interesting 90° hot end and transparent heated build plate, the Positron managed to hit most of its design goals. But there’s always room for improvement, and Positron V3, shown in the video below, has made some pretty substantial leaps over that original concept.

The V3 design keeps the basic layout of the original, but greatly improves the usability and portability, while increasing performance and build volume. The heated borosilicate build plate is now held to the Z-axis drive with a much sturdier strut, and gets its juice through a high-temperature MagSafe connector. The X- and Y-axes are now driven by pancake steppers, which along with adding idler pulleys that are coaxial to the drive pulleys, make the CoreXY drive, and hence the printer’s base, much more compact. The printer is still much, much faster than most traditional gantry design, and print quality is on par with anything available commercially. And yes, it still fits into a standard 1-kg filament spool box when folded up.

We love this design, and the story of how the V3 came about and the intermediate V2 that didn’t make the cut is a fascinating case study in design. And as a bonus, [Kralyn] will open-source the V3 design, so you can build your own as soon as he releases the files.

Continue reading “Portable 3D Printer Gets Even Smaller, Faster, Better”

Wind-Up Tape Measure Transformed Into Portable Ham Antenna

If there’s one thing that amateur radio operators are good at, it’s turning just about anything into an antenna. And hams have a long history of portable operations, too, where they drag a (sometimes) minimalist setup of gear into the woods and set up shop to bag some contacts. Getting the two together, as with this field-portable antenna made from a tape measure, is a double win in any ham’s book.

For [Paul (OM0ET)], this build seems motivated mainly by the portability aspect, and less by the “will it antenna?” challenge. In keeping with that, he chose a 50-meter steel tape measure as the basis of the build. This isn’t one of those retractable tape measures, mind you — just a long strip of flexible metal on a wind-up spool in a plastic case. His idea was to use the tape as the radiator for an end-fed halfwave, or EFHW, antenna, a multiband design that’s a popular option for hams operating from the 80-m band down to the 10-m band. EFHW antennas require an impedance-matching transformer, a miniature version of which [Paul] built and tucked within the tape measure case, along with a BNC connector to connect to the radio and a flying lead to connect to the tape.

Since a half-wave antenna is half the length of the target wavelength, [Paul] cut off the last ten meters of the tape to save a little weight. He also scratched off the coating on the tape at about the 40-meter mark, to make good contact with the alligator clip on the flying lead. The first video below details the build, while the second video shows the antenna under test in the field, where it met all of the initial criteria of portability and ease of deployment.

Continue reading “Wind-Up Tape Measure Transformed Into Portable Ham Antenna”

CRT cyberdeck

Old Portable TV Becomes Unique CRT Cyberdeck

Remember the “suitcase” form-factor for PCs? In the time before latops, these luggable machines were just the thing for the on-the-go executive. OK, maybe not really — but the ability to have PC, monitor, and peripherals in a single package had real appeal, and a lot of that rationale is behind the cyberdeck phenomenon. So when we saw this retro portable TV turned into a cyberdeck, it really caught our eye.

Ironically, the portable black-and-white TV that [Lucas Dul] chose as the basis for his cyberdeck hails from about the same period in time that luggable PCs were having their brief time in the sun. Scored from eBay, the Magnavox TV/radio combo had seen better days, and required a bit of surgery to repair what might have been drop damage. With the CRT restored and the video and audio paths located, the TV got a Raspberry Pi, a small touchpad, and a couple of concealed USB connectors. The Pi’s composite output drives the CRT, with about the results you’d expect. The keyboard appears to be just about the right size to serve as a cover, but [Lucas] said that’s a future project.

Still, with the TV’s original handle acting as a stand, this cyberdeck gives off a real Compaq or IBM portable PC vibe. We’ve seen a few luggable-lookalike cyberdecks before, but none that dared use a CRT monitor. It may be a far cry from HDMI, but we really appreciate that [Lucas] chose this way rather than slapping in an LCD.

Continue reading “Old Portable TV Becomes Unique CRT Cyberdeck”

Swiss Army Knife Of Power Tool Carts

When you’re into woodworking in a serious way, you’re going to eventually want some power tools. With such efficiency of operation, things can go pear-shaped quickly, with wood dust getting absolutely everywhere. It’s not always practical (or desirable) to work outdoors, and many of us only have small workshops to do our making in. But woodworking tools eat space quickly. Centralized extraction is one solution, but all that fixed rigid ducting forces one to fix the tool locations, which isn’t always a good thing. Moveable tool carts are nothing new, we’ve seen many solutions over the years, but this build by [Peter Waldraff] is rather slick (video embedded below,) includes some really nice features in a very compact — and critically — moveable format.

By repurposing older cabinets, [Peter] demonstrates some real upcycling, with little going to waste and the end result looks great too! There is a centralized M-Class (we guess) dust extractor with a removable vacuum pipe which is easily removed to hook up to the smaller hand-held tools. These are hidden in a section near the flip-up planer, ready for action. An auto-start switch for the small dust extractor is wired-in to the smaller tools to add a little ease of use while reducing the likelihood of forgetting to switch it on. We’ve all done that.

For the semi-fixed larger tools, such as the miter and table saws, a separate, higher flow rate moveable dust extractor can be wheeled over and hooked up to the integrated plenum chamber, which grabs the higher volume of dust and chips produced.

A nice touch was to mount the miter saw section on sliding rails.  This allows the whole assembly to slide sideways a little, giving more available width at the table saw for ripping wider sheets. With another little tweak of some latches, the whole miter section can flip over, providing even more access to the table saw, or just a small workbench! Cracking stuff!

Need some help getting good with wood, [Eric Strebel] has some great tips for you! And if you’re needs are simpler and smaller, much much smaller, here’s a finger-sized plane for you.

Continue reading “Swiss Army Knife Of Power Tool Carts”

A Tidy Cyberdeck That You Could Take Anywhere.

The cyberdeck trend has evolved to a relatively straightforward formula: take a desktop computer and strip it to its barest essentials of screen, PCB, and input device, before clothing it in a suitably post-apocalyptic or industrial exterior. Sometimes these can result in a stylish prop straight from a movie set, and happily for [Patrick De Angelis] his Raspberry Pi based cyberdeck (Italian, Google Translate link) fits this description, taking the well-worn path of putting a Raspberry Pi and screen into a ruggedised flight case. Its very unremarkability is the key to its success, using a carefully-selected wired keyboard and trackpad combo neatly dodges the usual slightly messy arrangements of microcontroller boards.

If this cyberdeck has a special feature it’s in the extra wireless interfaces and the stack of antennas on its right-hand side. The Pi touchscreen is a little small for the case and perhaps we’d have mounted it centrally, but otherwise this is a box we could imagine opening somewhere in the abandoned ruins of a once-proud Radio Shack store for a little post-apocalyptic Hackaday editing. After all, your favourite online tech news resource doesn’t stop because the power’s gone out!