Hacked Ultrasonic Sensors Let You See With Sound

If you want to play with radar — and who could blame you — you can pretty easily get your hands on something like the automotive radar sensors used for collision avoidance and lane detection. But the “R” in radar still stands for “Radio,” and RF projects are always fraught, especially at microwave frequencies. What’s the radar enthusiast to do?

While it’s not radar, subbing in ultrasonic sensors is how [Dzl] built this sonar imaging system using a lot of radar principles. Initial experiments centered around the ubiquitous dual-transducer ultrasonic modules used in all sorts of ranging and detection project, with some slight modifications to tap into the received audio signal rather than just using the digital output of the sensor. An ESP32 and a 24-bit ADC were used to capture the echo signal, and a series of filters were implemented in code to clean up the audio and quantify the returns. [Dzl] also added a downsampling routine to bring the transmitted pings and resultant echoes down in the human-audible range; they sound more like honks than pings, but it’s still pretty cool.

To make the simple range sensor more radar-like, [Dzl] needed to narrow the beamwidth of the sensor and make the whole thing steerable. That required a switch to an automotive backup sensor, which uses a single transducer, and a 3D printed parabolic dish reflector that looks very much like a satellite TV dish. With this assembly stuck on a stepper motor to swivel it back and forth, [Dzl] was able to get pretty good images showing clear reflections of objects in the lab.

If you want to start seeing with sound, [Dzl]’s write-up has all the details you’ll need. If real radar is still your thing, though, we’ve got something for that too.

Thanks to [Vanessa] for the tip.

Bogey Six O’clock!: The AN/APS-13 Tail Warning Radar

Although we think of air-to-air radar as a relatively modern invention, it first made its appearance in WWII. Some late war fighters featured the AN/APS-13 Tail Warning Radar to alert the pilot when an enemy fighter was on his tail. In [WWII US Bombers]’ fascinating video we get a deep dive into this fascinating piece of tech that likely saved many allied pilots’ lives.

Fitted to aircraft like the P-51 Mustang and P-47 Thunderbolt, the AN/APS-13 warns the pilot with a light or bell if the aircraft comes within 800 yards from his rear. The system consisted of a 3-element Yagi antenna on the vertical stabilizer, a 410 Mhz transceiver in the fuselage, and a simple control panel with a warning light and bell in the cockpit.

In a dogfight, this allows the pilot to focus on what’s in front of him, as well as helping him determine if he has gotten rid of a pursuer. Since it could not identify the source of the reflection, it would also trigger on friendly aircraft, jettisoned wing tanks, passing flak, and the ground. This last part ended up being useful for safely descending through low-altitude clouds.

This little side effect turned out to have very significant consequences. The nuclear bombs used on Hiroshima and Nagasaki each carried four radar altimeters derived from the AN/APS-13 system.

Continue reading “Bogey Six O’clock!: The AN/APS-13 Tail Warning Radar”

Fundamentals Of FMCW Radar Help You Understand Your Car’s Point Of View

Pretty much every modern car has some driver assistance feature, such as lane departure and blind-spot warnings, or adaptive cruise control. They’re all pretty cool, and they all depend on the car knowing where it is in space relative to other vehicles, obstacles, and even pedestrians. And they all have another thing in common: tiny radar sensors sprinkled around the car. But how in the world do they work?

If you’ve pondered that question, perhaps after nearly avoiding rear-ending another car, you’ll want to check out [Marshall Bruner]’s excellent series on the fundamentals of FMCW radar. The linked videos below are the first two installments. The first covers the basic concepts of frequency-modulated continuous wave systems, including the advantages they offer over pulsed radar systems. These advantages make them a great choice for compact sensors for the often chaotic automotive environment, as well as tasks like presence sensing and factory automation. The take-home for us was the steep penalty in terms of average output power on traditional pulsed radar systems thanks to the brief time the radar is transmitting. FMCW radars, which transmit and receive simultaneously, don’t suffer from this problem and can therefore be much more compact.

Continue reading “Fundamentals Of FMCW Radar Help You Understand Your Car’s Point Of View”

Amateur Astronomer Images Spy Satellite

As anyone who’s looked at the sky just before dawn or right after dusk can confirm, for the last seventy years or so there have been all kinds of artificial satellites floating around in low-Earth orbit that are visible to the naked eye. Perhaps the most famous in the last few decades is the International Space Station, but there are all kinds of others up there from amateur radio satellites, the Starlink constellation, satellite TV, and, of course, various spy satellites from a few of the world’s governments. [Felix] seems to have found one and his images of it can be found here.

[Felix] has been taking pictures of the night sky for a while now, including many different satellites. While plenty of satellites publish their paths to enable use, spy satellites aren’t generally public record but are still able to be located nonetheless. He uses a large Dobsonian telescope to resolve the images of several different satellites speculated to be spy satellites, with at least one hosting a synthetic aperture radar (SAR) system. His images are good enough to deduce the size and shape of the antennas used, as well as the size of the solar panels on board.

As far as being concerned about the ramifications of imaging top-secret technology, [Felix] is not too concerned. He states that it’s likely that most rival governments would be able to observe these satellites with much more powerful telescopes that he has, so nothing he has published so far is likely to be a surprise to anyone. Besides, these aren’t exactly hidden away, either; they’re up in the sky for anyone to see. If you want to take a shot at that yourself you can get a Dobsonian-like telescope mostly from parts at Ikea, and use a bit of off-the-shelf electronics to point them at just the right position too.

Adding Human Detection To Home Automation

Radar made a huge impact when it was first invented, allowing objects to be detected using radio waves which would normally be difficult or impossible to observe through other means. Radio waves of all frequencies can be used for radar as well, whether that’s detecting ships beyond the horizon, tracking aircraft near an airport, penetrating the ground, or imaging objects with a high resolution. At the millimeter wavelength it’s fairly easy to detect humans with the right hardware, and using some inexpensive radar modules [Tech Dregs] shows us how to add this capability a home automation system.

Since these modules aren’t trying to image humans with fine detail or detect them at long range, the hardware can be fairly inexpensive. [Tech Dregs] is using the LD2410B modules which have not only an on-board microcontroller but also have the radio antennas used for radar built right onto the PCB. They have a simple binary output which can communicate whether or not a human is detected, but there’s also UART for communicating more details about what the module senses in the room. [Tech Dregs] is using this mode to connect the modules to Home Assistant, where they will be used to help automate his home’s lighting.

The only significant problem he had setting these modules up was getting them built into an enclosure. The short wavelengths used in this type of radar module don’t penetrate solid objects very well at all, so after trying to hide one behind an e-ink screen he eventually settled on hollowing out a space in a bezel with very thin plastic between the module and the room. If you need more out of your radar modules than object detection, though, you can always try building a pulse compression radar which can provide much more accurate ranging of objects.

Continue reading “Adding Human Detection To Home Automation”

DIY Passive Radar System Verifies ADS-B Transmissions

Like most waves in the electromagnetic spectrum, radio waves tend to bounce off of various objects. This can be frustrating to anyone trying to use something like a GMRS or LoRa radio in a dense city, for example, but these reflections can also be exploited for productive use as well, most famously by radar. Radar has plenty of applications such as weather forecasting and various military uses. With some software-defined radio tools, it’s also possible to use radar for tracking aircraft in real-time at home like this DIY radar system.

Unlike active radar systems which use a specific radio source to look for reflections, this system is a passive radar system that uses radio waves already present in the environment to track objects. A reference antenna is used to listen to the target frequency, and in this installation, a nine-element Yagi antenna is configured to listen for reflections. The radio waves that each antenna hears are sent through a computer program that compares the two to identify the reflections of the reference radio signal heard by the Yagi.

Even though a system like this doesn’t include any high-powered active elements, it still takes a considerable chunk of computing resources and some skill to identify the data presented by the software. [Nathan] aka [30hours] gives a fairly thorough overview of the system which can even recognize helicopters from other types of aircraft, and also uses the ADS-B monitoring system as a sanity check. Radar can be used to monitor other vehicles as well, like this 24 GHz radar module found in some modern passenger vehicles.

Continue reading “DIY Passive Radar System Verifies ADS-B Transmissions”

DIY 6 GHZ Pulse Compression Radar

Conceptually, radar is pretty simple: send out a radio wave and time how long it takes to get back via an echo. However, in practice, there are a number of trade-offs to consider. For example, producing a long pulse has more energy and range, but limits how close you can see and also the system’s ability to resolve objects that are close to each other. Pulse compression uses a long transmission that varies in frequency. Reflected waves can be reconstituted to act more like a short pulse since there is information about the exact timing of the reflected energy. [Henrik] didn’t want to make things too easy, so he decided to build a pulse compression radar that operates at 6 GHz.

In all fairness, [Henrik] is no neophyte when it comes to radar. He’s made several more traditional devices using a continuous wave architecture. However, this type of radar is only found in a few restricted applications due to its inherent limitations. The new system can operate in a continuous wave mode, but can also code pulses using arbitrary waveforms.

Some design choices were made to save money. For example, the transmitter and receiver have limited filtering. In addition, the receiver isn’t a superheterodyne but more of a direct conversion receiver. The signal processing is made much easier by using a Zynq FPGA with a dual-core ARM CPU onboard. These were expensive from normal sources but could be had from online Chinese vendors for about $17. The system could boot Linux, although that’s future work, according to [Henrik].

At 6 GHz, everything is harder. Routing the PCB for DDR3 RAM is also tricky, but you can read how it was done in the original post. To say we were impressed with the work would be an understatement. We bet you will be too.

Radar has come a long way since World War II and is in more places than you might guess. We hate to admit it, but we’d be more likely to buy a ready-made radar module if we needed it.