Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The KiCad Plugin

A low-profile split keyboard with a sliding, round track pad on each half.
Image by [fata1err0r81] via reddit
The most striking feature of the Tenshi keyboard has to be those dual track pads. But then you notice that [fata1err0r81] managed to sneak in two extra thumb keys on the left, and that those are tilted for comfort and ease of actuation.

The name Tenshi means ‘angel’ in Japanese, and creator [fata1err0r81] says that the track pads are the halos. Each one slides on a cool 3D-printed track that’s shaped like a half dovetail joint, which you can see it closer in this picture.

Tenshi uses a pair of RP2040 Zeros as controllers and runs QMK firmware. The track pads are 40 mm each and come from Cirque. While the Cirques have been integrated into QMK, the pull request for ZMK has yet to be merged in. And about those angled keys — [fata1err0r81] says they tried risers, but the tilting feels like less effort. Makes total sense to me, but then again I’m used to a whole keyboard full of tilted keys.

Continue reading “Keebin’ With Kristina: The One With The KiCad Plugin”

The UMPC powered up, case-less showing the black PCB, with the display standing upwards and showing a blue colour scheme desktop with a CLI terminal open. To the right of it is one of the UMPCs that served as an inspiration for this project.

Bringing The UMPCs Back With A Pi Zero

Miss PDAs and UMPCs? You wouldn’t be the only one, and it’s a joy to see someone take the future into their own hands. [Icepat]’s dream is reviving UMPCs as a concept, and he’s bringing forth a pretty convincing hardware-backed argument in form of the Pocket Z project. For the hardware design, he’s hired two engineers, [Adam Nowak] and [Marcin Turek], and the 7-inch Pocket Z7 version is coming up quite nicely!

The Hackaday.io project shows an impressive gallery of inspiration devices front and center, and with these in mind, the first version of the 7-inch UMPC sets the bar high. With a 1024×600 parallel RGB (DPI) touchscreen display, an ATMega32U4-controlled keyboard, battery-ready power circuitry, and a socketed Pi Zero for brains, this device shows a promising future for the project, and we can’t wait to see how it progresses.

While it’s not a finished project just yet, this effort brings enough inspiration all around, from past device highlights to technical choices, and it’s worth visiting it just for the sentiment alone. Looking at our own posts, UMPCs are indeed resurfacing, after a decade-long hiatus – here’s a Sidekick-like UMPC with a Raspberry Pi, that even got an impressive upgrade a year later! As for PDAs, the Sharp memory LCD and Blackberry keyboard combination has birthed a good few projects recently, and, who can forget about the last decade’s introductions to the scene.

2024 Tiny Games Contest: Pi-O-Scope-Pong

[Aaron Lager]’s Pi-O-Scope-Pong project takes a minimal approach to Pong by drawing on an oscilloscope to generate crisp paddles and ball. A Raspberry Pi takes care of the grunt work of signal generation, and even uses the two joysticks of an Xbox controller (connected to the Pi over Bluetooth) for inputs.

Originally, [Aaron] attempted to generate the necessary signals directly from the Pi’s PWM outputs by doing a little bit of RC filtering on the outputs, but was repulsed by the smeary results. The solution? An old but perfectly serviceable 8-bit MAX506 DAC now handles crisping up the visuals with high-quality analog outputs. Code is available on the project’s GitHub repository.

There isn’t any score-keeping or sound, but one thing that it has over the original Pong is a round ball. The ball in the original Pong game was square, but mainly because cost was a concern during design and generating a round ball would have ballooned the part count.

In many ways, Pong itself is a great inspiration for the Tiny Games Challenge, because the simplicity of its gameplay was likely a big part of its success.

Continue reading “2024 Tiny Games Contest: Pi-O-Scope-Pong”

An RC Tracked Robot, Without The Pain

Small robots can be found at all levels from STEM toys for kids all the way through to complex hacker projects. Somewhere along that line between easy enough for anyone to build and interesting enough for hackers lies the PlayCar, from [ComfySpace]. It’s a small build-it-yourself tracked robot that’s controlled from your smartphone via an app.

At the PlayCar’s heart is a Raspberry Pi Zero 2W, and surrounding it are a set of inexpensive off the shelf modules for power and motor control. The juice meanwhile comes from a set of AA batteries, and the motors are geared DC units. Having acquired all the components, the 3D printable parts can then be downloaded from Printables, and the ComfySpace app can be downloaded for either Apple or Android platforms.

It’s clear that ComfySpace is a start-up targeting the education sector, and we wish them every success. The approach of making an open platform is one we like, as it has the potential to create a community feeding back designs and add-ons rather than remaining proprietary. You can take a  look at the video below the break for more information.

Continue reading “An RC Tracked Robot, Without The Pain”

A New Raspberry 5 DSI Cable Makes Using Screens Easier

Arguably the greatest strength of the Raspberry Pi is the ecosystem — it’s well-supported by its creators and the aftermarket. At the same time, the proliferation of different boards has made things more complicated over the years. Thankfully, though, the community is always standing by to help fix any problems. [Rastersoft] has stepped up in this regard, solving an issue with the Raspberry Pi 5 and DSI screen cables.

The root cause is that the DSI cable used on the Raspberry Pi 5 has changed relative to earlier boards. This means that if you use the Pi 5 with many existing screens and DSI cables, you’ll find your flat ribbon cable gets an ugly twist in it. This can be particularly problematic when using the cables in tight cases, where they may end up folded, crushed, or damaged.

[Rastersoft] got around this by designing a new cable that avoided the problem. It not only solves the twist issue, but frees up space around the CPU if you wish to use a cooler. Thanks to modern PCB houses embracing flexible boards, it’s easy to get it produced, too.

This is a great example of the democratization of PCB and electronics production in general. 20 years ago, you wouldn’t be able to make a flex cable like this without ordering 10,000 of them. Today, you can order a handful for your own personal use, and share the design with strangers on a whim. Easy, huh? It’s a beautiful world we live in.

Portable, Full-Size Arcade Cabinets

Believe it or not, there was a time when the only way for many of us to play video games was to grab a roll of quarters and head to the mall. Even though there’s a working computer or video game console in essentially every house now doesn’t mean we don’t look back with a certain nostalgia on those times, though. Some have turned to restoring vintage arcade cabinets and others build their own. This hackerspace got a unique request for a full-sized arcade cabinet that was also easily portable as well.

The original request was for a portable arcade cabinet, and the original designs were for a laptop-like tabletop arcade. But further back-and-forth made it clear they wanted full-size cabinets that just happened to also be portable. So with that criteria in mind the group started building the units. The updated design is modular, allowing the controls, monitor, and Raspberry Pi running the machines to be in self-contained units, with the cabinets in two parts that can quickly be assembled on-site. The base is separate and optional, with the top section capable of being assembled on the base or on something like a tabletop or bar, and the electronics section quickly drops in.

While the idea of a Pi-powered arcade cabinet is certainly nothing new, the quick build, prototyping, design, and final product that’s mobile and quickly assembled are all worth checking out. There is even more information on the build at the project’s GitHub page including Fusion 360 models. If you need your cabinets to be even more portable, this tabletop MAME cabinet is a great place to start.

FLOSS Weekly Episode 789: You Can’t Eat The Boards

This week Jonathan Bennett and Doc Searls chat with Igor Pecovnik and Ricardo Pardini about Armbian, the Debian-based distro tailor made for single-board computers. There’s more than just Raspberry Pi to talk about, with the crew griping about ancient vendor kernels, the less-than-easy ARM boot process, and more!

Continue reading “FLOSS Weekly Episode 789: You Can’t Eat The Boards”