Meccano Max Gets Hacked

There are plenty of “smart” toys out in the marketplace, some with more features than others. Nevertheless, most makers desire complete control over a platform, something that’s often lacking in any commercial offering. It was just this desire that motivated [MrDreamBot] to start hacking the Meccano Max.

Meccano Max is a small-statured companion robot, at about 30 centimeters high. Not content with the lack of an API, [MrDreamBot] decided to first experiment with creating an Arduino library to run Max’s hardware. With this completed, work then began on integrating a Hicat Livera devboard into the hardware. This is an embedded Linux system with Arduino compatibility, as well as the ability to stream video and connect over WiFi. Thus far, it’s possible to control Max through a browser, while viewing a live video feed from the ‘bot. It’s also possible to customize the expressions displayed on Max’s face.

Oftentimes, it pays to replace stock hardware rather than try and work with the limitations of the original setup, and this project is no exception. With that said, we’re still hoping someone out there will find a way to get Jibo back online. Look after your robot friends! Video after the break.

Continue reading “Meccano Max Gets Hacked”

Your Next Robot Needs Googly Eyes, And Other Lessons From Disney

There are so many important design decisions behind a robot: battery, means of locomotion, and position sensing, to name a few. But at a library in Helsinki, one of the most surprising design features for a librarian’s assistant robot was googly eyes. A company called Futurice built a robot for the Oodi library and found that googly eyes were a very important component.

The eyes are not to help the robot see, because of course they aren’t functional — at least not in that way. However without the eyes, robot designers found that people had trouble relating to the service robot. In addition, the robot needed emotions that it could show using the eyes and various sounds along with motion. This was inspired, apparently, by Disney’s rules for animation. In particular, the eyes would fit the rule of “exaggeration.” The robot could look bored when it had no task, excited when it was helping people, and unhappy when people were not being cooperative.

Continue reading “Your Next Robot Needs Googly Eyes, And Other Lessons From Disney”

Speed Up Filming With This Jawdropping 8-Axis Camera Crane

These days, it can feel like a project doesn’t exist unless you’ve posted a video on the Internet about it. [mingul] was in the process of producing his own videos, but found having to repeatedly move and set up the camera tiring. Naturally, a completely overkill eight-axis motion control robot was the solution. Video embedded below the break.

The scale of the build is something to behold. With 4.5 m travel on the X-axis, 6.5 m on the Y, and 2.1 m on the Z, it’s capable of traversing the full length of [mingul]’s workshop. Tilt, pan, and roll axes all feature 540 degrees of rotation, and there’s motors to control zoom and focus on the camera, too. Through software like Dragonframe, it’s possible to program complicated camera moves, and techniques like the classic dolly zoom are a cinch with such a versatile rig. It’s also possible to control the movement in real-time with a wireless Xbox controller.

[mingul] reports the build took a full three months of CNC machining, 3D printing and assembly. It’s a big step above a simple motorized camera slider, but we all have to start somewhere.

Continue reading “Speed Up Filming With This Jawdropping 8-Axis Camera Crane”

Skid Steer Mows Airport Grass Autonomously

Sure, mowing the lawn is a hassle. No one really wants to spend their time and money growing a crop that doesn’t produce food, but we do it anyway. If you’re taking care of a quarter acre in the suburbs it’s not that much of a time sink, but if you’re taking care of as much grass as [Roby], you’d probably build something similar to his autonomous skid-steer mower, too.

This thing isn’t a normal push mower outfitted with some random electronics, either. This is a serious mower that is essentially a tractor with blades attached to it. Since it’s a skid steer, it turns by means of two handles that control the speed of the left or right drive wheels. Fabricating up some servo linkages to attach them to specialized servos takes care of the steering portion, and the brain is ArduPilot hooked up to a host of radios, GPS, and a compass to allow it to drive all around the runways at the airport without interfering with any aircraft.

This is a serious build and goes into a lot of detail about how servos and linkages should behave, how all the software works, and the issues of actually mounting everything to the mower. The entire project is open source too, so even if you don’t have a whole airport runway to mow you might be able to find something in there to help with your little patch of grass.

Thanks to [Vincent] for the tip!

Continue reading “Skid Steer Mows Airport Grass Autonomously”

Russian Robot To Visit Space Station

The Russians were the first to send a dog into space, the first to send a man, and the first to send a woman. However, NASA sent the first humanoid robot to the International Space Station. The Russians, though, want to send FEDOR and proclaim that while Robonaut flew as cargo, a FEDOR model — Skybot F-850 — will fly the upcoming MS-14 supply mission as crew.

Defining the term robot can be tricky, with some thinking a proper robot needs to be autonomous and others seeing robotics under human control as enough. The Russian FEDOR robot is — we think — primarily a telepresence device, but it remains an impressive technical achievement. The press release claims that it can balance itself and do other autonomous actions, but it appears that to do anything tricky probably requires an operator. You can see the robot in ground tests at about the one minute mark in the video below.

Continue reading “Russian Robot To Visit Space Station”

Tiny Two-Legged PCB Robot

YouTuber and electronics engineer [Carl Bugeja] has a knack for finding creative uses for flexible PCBs. For the past year, he has been experimenting with PCB motors, using them on drones, robot fish, and most recently swarm robots. This is his final video in the vibro-bot series, and he’s got his best results to date. (Embedded below.)

He started off with flexible PCB actuators as robotic legs and magnets fitted into 3D-printed shells. The flexible PCB actuators work as inefficient electromagnets, efficient enough to react to a magnet when a current runs through, but not so efficient that they don’t release immediately.

The most recent design uses a rigid 0.6 mm FR4 PCB that acts as the frame to prevent the middle of the robot from bending. The “brain” of the robot is located at its center, which is connected to the flexible PCB actuators. Since the biggest constraint on his past robots was weight, he removed two of the legs to reduce the weight by 20%, resulting in straighter walks. He also added a Bluetooth module to wirelessly control the robot and replaced his old LiPo with a new, lighter battery (28 mAh, 15 C, 420 mA).

His latest video now shows that the robot is able to move forwards, backwards, and side to side. That’s a huge improvement over his previous attempts, which mostly resulted in the robot vibrating in place or flopping around his workbench. It’s not going to fetch you a beer, but it’s really cool.

Continue reading “Tiny Two-Legged PCB Robot”

[Jessica] Is Soft On Robot Grippers

It is an old movie trope: a robot grips something and accidentally crushes it with its super robot strength. A little feedback goes a long way, of course, but futuristic robots may also want to employ soft grippers. [Jessica] shows how to build soft grippers made of several cast fingers. The fingers are cast from Ecoflex 00-50, and use air pressure.

A 3D-printed mold is used to cast the Ecoflex fingers, which are only workable for 18 minutes after mixing, so it’s necessary to work fast and have everything ready before you start.

Continue reading “[Jessica] Is Soft On Robot Grippers”