Recreating The Quadrophonic Sound Of The 70s

For plenty of media center PCs, home theaters, and people with a simple TV and a decent audio system, the standard speaker setup now is 5.1 surround sound. Left and right speakers in the front and back, with a center speaker and a subwoofer. But the 5.1 setup wasn’t always the standard (and still isn’t the only standard); after stereo was adopted mid-century, audio engineers wanted more than just two channels and briefly attempted a four-channel system called quadrophonic sound. There’s still some media from the 70s that can be found that is built for this system, such as [Alan]’s collection of 8-track tapes. These tapes are getting along in years, so he built a quadrophonic 8-track replica to keep the experience alive.

The first thing needed for a replica system like this is digital quadrophonic audio files themselves. Since the format died in the late 70s, there’s not a lot available in modern times so [Alan] has a dedicated 8-track player connected to a four-channel audio-to-USB device to digitize his own collection of quadrophonic 8-track tapes. This process is destructive for the decades-old tapes so it is very much necessary.

With the audio files captured, he now needs something to play them back with. A Raspberry Pi is put to the task, but it needs a special sound card in order to play back the four channels simultaneously. To preserve the feel of an antique 8-track player he’s cannibalized parts from three broken players to keep the cassette loading mechanism and track indicator display along with four VU meters for each of the channels. A QR code reader inside the device reads a QR code on the replica 8-track cassettes when they are inserted which prompts the Pi to play the correct audio file, and a series of buttons along with a screen on the front can be used to fast forward, rewind and pause. A solenoid inside the device preserves the “clunk” sound typical of real 8-track players.

As a replica, this player goes to great lengths to preserve the essence of not only the 8-track era, but the brief quadrophonic frenzy of the early and mid 70s. There’s not a lot of activity around quadrophonic sound anymore, but 8-tracks are popular targets for builds and restorations, and a few that go beyond audio including this project that uses one for computer memory instead.

Continue reading “Recreating The Quadrophonic Sound Of The 70s”

Arduino Auto-Glockenspiel Looks Proper In Copper

What is it about solenoids that makes people want to make music with them? Whatever it is, we hope that solenoids never stop inspiring people to make instruments like [CamsLab]’s copper pipe auto-glockenspiel.

At first, [CamsLab] thought of striking glasses of water, but didn’t like the temporary vibe of a setup like that. They also considered striking piano keys, but thought better of it when considering the extra clicking sound that the solenoids would make, plus it seemed needlessly complicated to execute. So [CamsLab] settled on copper pipes.

That in itself was a challenge as [CamsLab] had to figure out just the right lengths to cut each pipe in order to produce the desired pitch. Fortunately, they started with a modest 15-pipe glockenspiel as a proof of concept. However, the most challenging aspect of this project was figuring out how to mount the pipes so that they are close enough to the solenoids but not too close, and weren’t going to move over time. [CamsLab] settled on fishing line to suspend them with a 3D-printed frame mounted on extruded aluminium. The end result looks and sounds great, as you can hear in the video after the break.

Of course, there’s more than one way to auto-glockenspiel. You could always use servos.

Continue reading “Arduino Auto-Glockenspiel Looks Proper In Copper”

A Fully-Transparent Air Bubble Display

We all have good intentions when starting a new project, but then again, we all know where those lead. Such is the case with [RealCorebb]’s BBAir project, a completely transparent air bubble display. Although the plan was to spend about three months on it, the months slowly added up to a full year of tinkering.

It all started when [RealCorebb] made a subscriber counter using Minecraft campfire smoke to display the digits. Someone suggested using air to implement the next iteration, and for [RealCorebb], it was challenge accepted. After considering a syringe for each channel, a separate pump, or one pump and many solenoids, [RealCorebb] settled on solenoids to push air, and designed a PCB to reduce the amount of wire spaghetti.

Once [RealCorebb] created an acrylic enclosure and wired everything up, it was time to test it out. Everything worked, except that air was leaking from somewhere, which turned out to be the way the solenoids were installed. Then, of course, it was time to don sunglasses and write the code. We still don’t know if [RealCorebb] settled on water, glycerine, or silicone oil, but the end result is quite nice, and we’re betting on glycerine. Be sure to check out the build video after the break, which has English subtitles.

Although we’ve seen our share of bubble displays before, we often discuss bubble LEDs displays like this one.

Continue reading “A Fully-Transparent Air Bubble Display”

Virginia Cave Is The Largest Musical Instrument In The World

Hit something with a hammer, and it makes a sound. If you’re lucky, it might even make a pleasant sound, which is the idea behind the Great Stalacpipe Organ in Luray Caverns, Virginia. The organ was created in 1954 by [Leland W. Sprinkle], who noticed that some stalactites (the ones that come down from the ceiling of the cave) would make a nice, pure tone when hit.

So, he did what any self-respecting hacker would do: he picked and carved 37 to form a scale and connected them to an electronic keyboard. The resonating stalactites are spread around a 3.5 acre (14,000 square meters) cave, but because it is in a cave, the sound can be heard anywhere from within the cave system, which covers about 64 acres (260,000 square meters). That makes it the largest musical instrument in the world.

We’ll save the pedants the trouble and point out that the name is technically an error — this is not a pipe organ, which relies on air driven into resonant chambers. Instead, it is a lithophone, a percussion instrument that uses rock as the resonator. You can see one of the solenoids that hits the rock to make the sound below.

This is also the sort of environment that gives engineers nightmares: a constant drip-drip-drip of water filled with minerals that love to get left behind when the water evaporates. Fortunately, the Stalacpipe Organ seems to be in good hands: according to an NPR news story about it, the instrument is maintained by lead engineer for the caverns [Larry Moyer] and his two apprentices, [Stephanie Beahm] and [Ben Caton], who are learning the details of maintaining a complex device like this.

Continue reading “Virginia Cave Is The Largest Musical Instrument In The World”

Forever Writing On Monofilament Fishing Line

Collectively, we have a long-term memory problem. Paper turns to mulch, dyes in optical disks degrade, iron oxides don’t last forever, and flash memories will eventually fade away. So what do you do when you want to write something down and make sure it’s around a couple of thousand years from now? Easy — just use something that even Mother Nature herself has trouble breaking down: plastic.

Specifically, fluoropolymer fishing line, which is what [Nikolay Valentinovich Repnitskiy] uses as a medium in his “Carbon Record” project. There’s not a lot of information in the repository, but the basic idea is to encode characters by nicking the fishing line along its length. The encoder is simple enough; a spool of fresh line is fed into a machine where a solenoid drives a sharpened bolt against the filament. This leaves a series of nicks that encode the ones and zeros of 255 ASCII characters. It looks like [Nikolay] went through a couple of prototypes before settling on the solenoid; an earlier version used a brushed motor to drive the encoder, but the short, rapid movements proved too much for the motor to handle. We’ve included a video below that shows the device encoding some text; sounds a little like Morse to us.

There seems to be a lot more going on with this device than the repo lets on; we’d love to know what the big heat sink on top is doing, for instance. Hopefully we’ll get more details, including how [Nikolay] intends to decode the dents. Or perhaps that’s an exercise best left to whoever finds these messages a few millennia hence.

It’s A Marble Clock, But Not As We Know It

[Ivan Miranda] is taking a very interesting approach to a marble clock. His design is a huge assembly that uses black and white marbles to create a (sort of) dot matrix display. It’s part kinetic art and part digital clock, all driven by marbles.

Here’s how it works: black and white marbles feed into a big elevator. This elevator lifts marbles to the top of the curved runs that make up the biggest part of the device. The horizontal area at the bottom is where the time is shown, with white and black marbles making up the numerical display. But how to make sure the white marbles and black marbles go in the right order?

The solution to that is simple. Marbles feed into the elevator in an unpredictable order. An array of sensors detects the color of each marble. Solenoids simply eject any marble that isn’t in the right place. For example, if the next marble for track n needs to be white, then simply kick out any black marbles in that position until there’s a white one. Simple, effective, and guarantees plenty of mesmerizing moving parts.

Of course, this means that marble ejection and marble color sensing need to be utterly reliable, and [Ivan] ran into problems with both. Marble ejection took some careful component testing and selection to get the right solenoids.  Color sensing (as well as detecting empty spaces) settled on IR-based sensors commonly used in line-following robots.

You can watch the clock in action in the video embedded below just under the page break. We recommend giving it a look, because [Ivan] does a great job of showing all of the little challenges that reared their heads, and how he addressed them. There are still a few things to address, but he expects to have those licked by the next video. In the meantime, [Ivan] asks that if anyone knows a source for high quality glass marbles in bulk, please let him know. Low quality ones vary in size and tend to get stuck.

Marble clocks are great expressions of creativity, especially now that 3D printing is common. We love clock hacks, so if you ever create or run across a good one, let us know about it!

Continue reading “It’s A Marble Clock, But Not As We Know It”

Pour One Out For This Bottle-Playing Robot

If you have an iota of musicality, you’ve no doubt noticed that you can play music using glass bottles, especially if you have several of different sizes and fill them with varying levels of water. But what if you wanted to accompany yourself on the bottles? Well, then you’d need to build a bottle-playing robot.

First, [Jens Maker Adventures] wrote a song and condensed it down to eight notes. With a whole lot of tinkling with a butter knife against their collection of wine and other bottles, [Jens] was able to figure out the lowest note for a given bottle by filing it with water, and the highest note by emptying it out.

With the bottle notes selected, the original plan was to strike the bottles with sticks. As it turned out, 9g servos weren’t up to the task, so he went with solenoids instead. Using Boxes.py, he was able to parameterize a just-right bottle holder to allow for arranging the bottles in a circle and striking them from the inside, all while hiding the Arduino and the solenoid driver board. Be sure to check it out after the break.

Don’t have a bunch of bottles lying around? You can use an Arduino to play the glasses.

Continue reading “Pour One Out For This Bottle-Playing Robot”