Customizable Bird Clock Sings The Hours By

For those looking to build their own clocks, one of the easiest ways to get started is with a pre-built module that uses a simple quartz oscillator and drives a set of hands. This generally doesn’t allow for much design of the clock besides the face, and since [core weaver] was building a clock that plays bird songs, a much more hackable clock driver was needed to interface with the rest of the electronics needed to build this project.

The clock hands for this build are driven by a double stepper motor which controls an hour and minute hand coaxially but independently. Originally an H-bridge circuit was designed for driving each of the hands but they draw so little current in this configuration that they could be driven by the microcontroller directly. A DS3231 clock is used for timekeeping connected to an ATMega128a which controls everything else. At the start of each hour the clock plays a corresponding bird song by communicating with an mp3 module, and a remote control can also be used to play the songs on demand.

Bird clocks are not an uncommon thing to find off the shelf, but this one adds a number of customizations that let it fly above those offerings, including customizing the sounds that play on the hour and adding remote control capabilities, a lithium battery charging circuit, and a number of other creature comforts. If you’re looking for even more unique bird clock designs this binary bird clock might fit the bill.

Continue reading “Customizable Bird Clock Sings The Hours By”

A 3D-printed clock that uses flaps for the digits that get rotated.

Non-Split-Flap Clock Does It With Fewer Flaps

As cool as split-flap clocks and displays are, they do have a few disadvantages. The mechanism sticks out on the side, and the whole thing relies on gravity. Some people don’t care for the visual split in the middle of each digit that comes as a result. And their cousins, the Numechron clocks? Those wheels, especially the hours wheel, are really big compared to the size of what they display, so the clock housings are huge by comparison.

[shiura] decided to re-invent the digital display and came up with this extremely cool spinning flap mechanism that uses a lip to flip each flap after it is shown. Thanks to this design, only half the number of flaps are needed. Not only is the face of the clock able to be much larger compared to the overall size of the thing, the whole unit is quite shallow. Plus, [shiura] tilted the display 15° for better visibility.

If you want to build one of these for yourself, [shiura] has all the STLs available and some pretty great instructions. Besides the printed parts, you don’t need much more than the microcontroller of your choice and a stepper motor. Check out the demo/build video after the break, and stick around for the assembly video.

Don’t mind the visual split in the numbers? Check out this split-flap clock that uses a bunch of magnets.

Continue reading “Non-Split-Flap Clock Does It With Fewer Flaps”

Designing A Quality Camera Slider Can Be Remarkably Satisfying

Camera sliders are great creative tools, letting you get smooth controlled shots that can class up any production. [Anthony Kouttron] decided to build one for an engineering class, and he ended up mighty satisfied with what he and his team accomplished.

As an engineering class project, this wasn’t a build done on a whim. Instead, [Anthony] and his fellow students spent plenty of time hashing out what they needed this thing to do, and how it should be built. An Arduino was selected as the brains of the operation, as a capable and accessible microcontroller platform. Stepper motors and a toothed belt drive were used to move the slider in a controllable fashion. The slider’s control interface was an HD44780-based character LCD, along with a thumbstick and two pushbuttons. The slider relied on steel tubes for a frame, which was heavy, but cost-effective and easy to fabricate. Much of the parts were salvaged from legendary e-waste bins on the university grounds.

The final product was stout and practical. It may not have been light, but the steel frame and strong stepper motor meant the slider could easily handle even heavy DSLR cameras. That’s something that lighter builds can struggle with.

Ultimately, it was an excellent learning experience for [Anthony] and his team. As a bonus, he got some great timelapses out of it, too. Video after the break.

Continue reading “Designing A Quality Camera Slider Can Be Remarkably Satisfying”

A DIY split-flap clock in red, black, and white.

Split-Flap Clock Uses Magnets Everywhere

While split-flap alarm clocks once adorned heavy wood nightstands in strong numbers, today the displays are most commonly found in train stations and airports. Hey, at least they’re still around, right? Like many of us, [The Wrench] has always wanted to make one for themselves, but they actually got around to doing it.

A DIY split-flap clock and its magnetic base.This doesn’t seem like a beginner-friendly project, but [The Wrench] says they were a novice in 3D design and so used Tinkercad to design all the parts. After so many failures, they settled on a design for each unit that uses a spool to attach the flaps, which is turned by a stepper motor.

A small neodymium magnet embedded in the primary gear and a Hall effect sensor determine where the stepper motor is, and in turn, which number is displayed. Everything is handled by an Arduino Nano on a custom PCB.

Aside from the sleek, minimalist look, our favorite part is that [The Wrench] used even more magnets to connect each display segment to the base. You may have noticed that there are only three segments, because the hours are handled by a single display that has flaps for 10, 11, and 12. This makes things simpler and gives the clock an interesting look. Be sure to check out the build video after the break.

Want to build a more complicated clock? Try suspending sand digits in the air with persistence of vision.

Continue reading “Split-Flap Clock Uses Magnets Everywhere”

Roboticizing An Etch-a-Sketch

The Etch-a-Sketch was a popular toy, but a polarizing one. You were either one of those kids that had the knack, or one of the kids that didn’t. [Micah] was pretty firmly in the latter group, so decided to roboticize the Etch-a-Sketch so a computer could draw for him instead.

The build uses a pair of stepper motors attached to the Etch-a-Sketch’s knobs via 3D-printed adapters. It took [Micah] a few revisions to get the right design and the right motors for the job, but it all came together. A Raspberry Pi is charged with driving the motors to draw the desired picture.

Beyond the mechanics, [Micah] also does a great job of explaining the challenges around drawing and the drive software. Namely, the Etch-a-Sketch has a major limitation in that there’s no way to move the stylus without drawing a line. He accounts for this in his code for converting and drawing images.

The robot draws slowly but surely. The final result is incredibly impressive, and far exceeds what most of us could achieve on by hand. We’ve seen some similar builds in the past, too. Video after the break.

Continue reading “Roboticizing An Etch-a-Sketch”

A Raspberry Pi in an enclosure, connected to a stepper motor controller and a UMTS stick

2024 Home Sweet Home Automation: SMS Controlled Heating

Hackaday.io user [mabe42] works during the week away from their home city and rents a small apartment locally to make this life practical. However, the heating system, a night-storage system, is not so practical. They needed a way to remotely control the unit so that the place was habitable after a long winter commute; lacking internet connectivity, they devised a sensible solution to create an SMS-controlled remote heating controller.

The controller runs atop an old Raspberry Pi B inside a 3D-printed case. Seeing such an old board given a real job to do is nice. Connectivity is via a USB UMTS stick which handles the SMS over the cellular network. The controller knob for the heater thermostat (not shown) is attached via a toothed belt to a pully and a 28BYJ-48 5V geared stepper motor. Temperature measurement is via the ubiquitous DS1820 module, which hooks straight up to the GPIO on the Pi and works out of the box with many one-wire drivers.

The software is built on top of Gammu, which handles the interface to the UMTS device. Daily and historical temperature ranges are sent via SMS so [mabe42] can decide how to configure the heating before their arrival. The rest of the software stack is in Python, as per this (German-language) GitHub project.

While we were thinking about storage heating systems (and how much of a pain they are), we came across this demonstration of how to build one yourself.

A raspberry pi-based digital readout above an old lathe

Roll Your Own DRO With An Added Twist

When using a manual machine tool such as a lathe or milling machine, there can be a lot of pressure to read the position and feed the axes at the correct rate. That’s why modern machines typically have some form of digital read-out (DRO). [Stefano Bertelli] has created a simple Raspberry Pi based DRO with an additional twist, that of a linked motor drive output.

A view of the custom RS485 interfaced DRO readout and motor controller
Realtime encoder position reading and motor control are best done with a dedicated microcontroller, ideally with a proper RTOS.

The axes that need to be monitored should be mechanically attached to a position sensor like a linear encoder or a rotary type. Using a linear sensor with a linear axis instead of a rotary encoder on the downstream dial is better. For the readout unit, [Stefano] used a WaveShare 7-inch touchscreen module with a Raspberry Pi 3 for the UI of the readout unit. The Pi has a custom-designed HAT, that performs power conditioning and provides a robust RS485 interface. Connected via that RS485 link is another custom PCB based on an STM32F411 with a few supporting power supplies and interfacing components. The job of this board is to interface to the position encoders, reading positioning pulses using interrupts. There is an additional stepper motor drive courtesy of a ULN2003 Darlington driver to allow the control of a single motorised axis. An additional motor driver module is required, which should be no surprise since driving a milling machine axis will require a fairly beefy motor. This GitHub repo contains the FreeRTOS-based firmware for this board. This motor drive has the ability to be connected to a measuring axis in a programmable way, enabling one axis to be adjusted to follow or jump in controlled steps with another. This feature can significantly simplify certain types of machining operations, as [Stefano] elaborates in the video.

Lastly, the Raspberry Pi runs a simple Python application with Kivy for the GUI. As [Stefano] explains in the video below, this makes debugging and modification quite simple.

Adding DROs to an older machine is an obvious but valuable hack. Here’s another way to do it. If that’s too much work, then you could just hack a digital readout calliper in there.

Continue reading “Roll Your Own DRO With An Added Twist”