Watching The Watchers: The State Of Space Surveillance

By now you’ve almost certainly heard about the recent release of a high-resolution satellite image showing the aftermath of Iran’s failed attempt to launch their Safir liquid fuel rocket. The geopolitical ramifications of Iran developing this type of ballistic missile technology is certainly a newsworthy story in its own right, but in this case, there’s been far more interest in how the picture was taken. Given known variables such as the time and date of the incident and the location of the launch pad, analysts have determined it was likely taken by a classified American KH-11 satellite.

The image is certainly striking, showing a level of detail that far exceeds what’s available through any of the space observation services we as civilians have access to. Estimated to have been taken from a distance of approximately 382 km, the image appears to have a resolution of at least ten centimeters per pixel. Given that the orbit of the satellite in question dips as low as 270 km on its closest approach to the Earth’s surface, it’s likely that the maximum resolution is even higher.

Of course, there are many aspects of the KH-11 satellites that remain highly classified, especially in regards to the latest hardware revisions. But their existence and general design has been common knowledge for decades. Images taken from earlier generation KH-11 satellites were leaked or otherwise released in the 1980s and 1990s, and while the Iranian image is certainly of a higher fidelity, this is not wholly surprising given the intervening decades.

What we know far less about are the orbital surveillance assets that supersede the KH-11. The satellite that took this image, known by its designation USA 224, has been in orbit since 2011. The National Reconnaissance Office (NRO) has launched a number of newer spacecraft since then, with several more slated to be lifted into orbit between now and 2021.

So let’s take a closer look at the KH-11 series of reconnaissance satellites, and compare that to what we can piece together about the next generation or orbital espionage technology that’s already circling overhead might be capable of.

Continue reading “Watching The Watchers: The State Of Space Surveillance”

What Hardware Lies Beneath? Companies Swear They Never Meant To Violate Your Privacy

“Don’t Be Evil” was the mantra of Google from years before even Gmail was created. While certainly less vague than their replacement slogan “Do the Right Thing”, there has been a lot of criticism directed at Google over the past decade and a half for repeatedly being at odds with one of their key values. It seems as though they took this criticism to heart (or found it easier to make money without the slogan), and subsequently dropped it in 2018. Nothing at Google changed, though, as the company has continued with several practices which at best could be considered shady.

The latest was the inclusion of an undisclosed microphone in parts of their smart home system, the Nest Guard. This is a member of the Nest family of products — it is not the thermostat itself, but a base station for a set of home security hardware you can install yourself. The real issue is that this base station was never billed as being voice activated. If you’re someone who has actively avoided installing “always-listening” style devices in your home, it’s infuriating to learn there is hardware out that have microphones in them but no mention of that in the marketing of the product. Continue reading “What Hardware Lies Beneath? Companies Swear They Never Meant To Violate Your Privacy”

Vibrosight Hears When You Are Sleeping. It Knows When You’re Awake.

No matter how excited you are to dive headfirst into the “Internet of Things”, you’ve got to admit that the effort and expense of going full-on Jetsons is a bit off-putting. To smarten up your home you’ve generally got to buy all new products (and hope they’re all compatible) or stick janky after-market sensors on the gear you’ve already got (and still hope they’re all compatible). But what if there was a cheap and easy way to keep tabs on all your existing stuff? The answer may lie in Cold War era surveillance technology.

As if the IoT wasn’t already Orwellian enough, Vibrosight is a project that leverages a classic KGB spy trick to keep tabs on what’s going on inside your home. Developed by [Yang Zhang], [Gierad Laput] and [Chris Harrison], the project uses retro-reflective stickers and a scanning laser to detect vibrations over a wide area. With this optical “stethoscope”, the system can glean all kinds of information; from how long you’ve been cooking something in the microwave to whether or not you washed your hands.

The project takes its inspiration from the optical eavesdropping system developed by Léon Theremin in the late 1940’s. By bouncing a beam of light off of a window, Theremin’s gadget was able to detect what people inside the room were saying from a distance. The same idea is applied here, except now it uses an automated laser scanner and machine learning to turn detected vibrations into useful information that can be plugged into a home automation system.

For Vibrosight to “listen” to objects, the user needs to place retro-reflective tags on whatever they want to include in the system. The laser will periodically scan around the room looking for these tags. Once the laser finds a new tag, will add it to a running list of targets to keeps an eye on. From there Vibrosight is able to take careful vibration measurements which can provide all sorts of information. In the video after the break, Vibrosight is shown differentiating between walking, jogging, and running on a treadmill and determining what kind of hand tools are being used on a workbench. The team even envisions a future where Vibrosight-ready devices would “hum” their IP address or other identifying information to make device setup easier.

If all this talk of remote espionage at a distance has caught your interest, we’ve covered Theremin’s unique surveillance creations in the past, and even a way to jam them if you’re trying to stay under the radar.

Continue reading “Vibrosight Hears When You Are Sleeping. It Knows When You’re Awake.”

Cell Phone Surveillance Car

There are many viable options for home security systems, but where is the fun in watching a static camera feed from inside your place? The freedom to really look around might have been what compelled [Varun Kumar] to build a security car robot to drive around his place and make sure all is in order.

Aimed at cost-effectiveness and WiFi or internet accessibility, an Android smartphone provides the foundation of this build — skipping the need for a separate Bluetooth or WiFi module — and backed up by an Arduino Uno, an L298 motor controller, and two geared DC motors powering the wheels.

Further taking advantage of the phone’s functionality, the robot is controlled by DTMF tones. Using the app DTMF Tone Generator and outputting through the 3.5mm jack, commands are interpreted by a MT8870DE DTMF decoder module.While this control method carries some risks — as with many IoT-like devices — [Kumar] has circumvented one of DTMF’s vulnerabilities by adding a PIN before the security car will accept any commands.

He obtains a live video feed from the phone using AirDroid in concert with VNC server, and assisted by a servo motor for the phone is enabled to sweep left and right for a better look. A VNC client on [Kumar]’s laptop is able to access the video feed and issue commands. Check it out in action after the break!

Continue reading “Cell Phone Surveillance Car”

34C3: Microphone Bugs

Inspiration can come from many places. When [Veronica Valeros] and [Sebastian Garcia] from the MatesLab Hackerspace in Argentina learned that it took [Ai Weiwei] four years to discover his home had been bugged, they decided to have a closer look into some standard audio surveillance devices. Feeling there’s a shortage of research on the subject inside the community, they took matters in their own hands, and presented the outcome in their Spy vs. Spy: A modern study of microphone bugs operation and detection talk at 34C3. You can find the slides here, and their white paper here.

Focusing their research primarily on FM radio transmitter devices, [Veronica] and [Sebastian] start off with some historical examples, and the development of such devices — nowadays available off-the-shelf for little money. While these devices may be shrugged off as a relic of Soviet era spy fiction and tools of analog times, the easy availability and usage still keeps them relevant today. They conclude their research with a game of Hide and Seek as real life experiment, using regular store-bought transmitters.

An undertaking like this would not be complete without the RTL-SDR dongle, so [Sebastian] developed the Salamandra Spy Microphone Detection Tool as alternative for ready-made detection devices. Using the dongle’s power levels, Salamandra detects and locates the presence of potential transmitters, keeping track of all findings. If you’re interested in some of the earliest and most technologically fascinating covert listening devices, there is no better example than Theremin’s bug.

Continue reading “34C3: Microphone Bugs”

Edward Snowden Introduces Baby Monitor For Spies

Famed whistleblower [Edward Snowden] has recently taken to YouTube to announce Haven: an Open Source application designed to allow security-conscious users turn old unused Android smartphones and tablets into high-tech monitoring devices for free. While arguably Haven doesn’t do anything that wasn’t already possible with software on the market, the fact that it’s Open Source and designed from the ground up for security does make it a bit more compelling than what’s been available thus far.

Developed by the Freedom of the Press Foundation, Haven is advertised as something of a role-reversal for the surveillance state. Instead of a smartphone’s microphone and camera spying on its owner, Haven allows the user to use those sensors to perform their own monitoring. It’s not limited to the camera and microphone either, Haven can also pull data from the smartphone’s ambient light sensor and accelerometer to help determine when somebody has moved the device or entered the room. There’s even support for monitoring the device’s power status: so if somebody tries to unplug the device or cut power to the room, the switch over to the battery will trigger the monitoring to go active.

Thanks to the Open Source nature of Haven, it’s hoped that continued development (community and otherwise) will see an expansion of the application’s capabilities. To give an example of a potential enhancement, [Snowden] mentions the possibility of using the smartphone’s barometer to detect the opening of doors and windows.

With most commercially available motion activated monitor systems, such as Nest Cam, the device requires a constant Internet connection and a subscription. Haven, on the other hand, is designed to do everything on the local device without the need for a connection to the Internet, so an intruder can’t just knock out your Wi-Fi to kill all of your monitoring. Once Haven sees or hears something it wants you to know about it can send an alert over standard SMS, or if you’re really security minded, the end-to-end encrypted Signal.

The number of people who need the type of security Haven is advertised as providing is probably pretty low; unless you’re a journalist working on a corruption case or a revolutionary plotting a coup d’etat, you’ll probably be fine with existing solutions. That being said, we’ve covered on our own pages many individuals who’ve spent considerable time and effort rolling their own remote monitoring solutions which seem to overlap the goals of Haven.

So even if your daily life is more John Doe than James Bond, you may want to check out the GitHub page for Haven or even install it on one of the incredibly cheap Android phones that are out there and take it for a spin.

Continue reading “Edward Snowden Introduces Baby Monitor For Spies”

Inside An Amateur Bugging Device

[Mitch] got interested in the S8 “data line locator” so he did the work to tear into its hardware and software. If you haven’t seen these, they appear to be a USB cable. However, inside the USB plug is a small GSM radio that allows you to query the device for its location, listen on a tiny microphone, or even have it call you back when it hears something. The idea is that you plug the cable into your car charger and a thief would never know it was a tracking device. Of course, you can probably think of less savory uses despite the warning on Banggood:

Please strictly abide by the relevant laws of the state, shall not be used for any illegal use of this product, the consequences of the use of self conceit.

We aren’t sure what the last part means, but we are pretty sure people can and will use these for no good, so it is interesting to see what they contain.

Continue reading “Inside An Amateur Bugging Device”