Simple IPhone Telescope Mount

This cheap and easy hack will let you use your old smart phone to take pictures and videos of the view through a telescope. [Xobmo] built the connector for just 55 cents. Apart from our concerns about scratching the lens when inserting the phone in the bracket we love the idea.

He was given the Celestron Powerseeker 70AZ as a gift from his wife last Christmas. He looked around the Internet and saw that there are already some solutions for recording video using an iPhone 3GS. This design on Thingiverse would be perfect, but he doesn’t have access to a 3D printer and ordering it form a service would cost almost $50. But when he got to thinking about it, all he needed was a ring to fit on the telescope and a way to connected the iPhone to it. He headed down to the hardware store and picked up a PVC coupler. After working with a hack saw and drill he ended up with a slot with two wings on it. Just slip the phone in and slide the ring on the eyepiece. You can see some action shots, and get a look at the mount itself, in the clip after the break.

Continue reading “Simple IPhone Telescope Mount”

Another Great Backyard Observatory Build

With a little help from their friends [Jeff Fisher] and his dad built this observatory in their back yard. Their use of simple building materials and techniques show that you can create a respectable home observatory without breaking the bank.

It starts with a footing for the telescope mount. This is completely separated from the building that surrounds it so there will be no issue with vibrations affecting the images it is capturing. From there a foundation made of cinder blocks was laid before placing joists and installing a sub floor. It was during this process that they trenched and placed conduit to run power to the building. With the floor in place the walls were stick built and a carefully crafted dome was assembled and hefted in place by this septet of gentlemen.

Four months was all it took to get to this point, but [Jeff] and his dad are still working on a deck to go around the observatory. They’re using a very nice telescope that they purchased, but it is also possible to build one of those yourself.

[via Reddit]

Father/son Team Goes Big With Backyard Observatory

Oh that? It’s just the backyard observatory we built last summer. You know, for fun. This is a conversation we image [Kakon24] and his dad are having quite often these days. They’re astronomy interests just got a big equipment upgrade when they built a huge observatory on their homestead. Now we don’t proclaim to know a lot about observatory quality, but this is head and shoulders above what most people manage to acquire.

It isn’t a simple build either. It’s a full-fledged building of its own, starting with a poured foundation, then stick framing which was covered in stone work. The images tell the story of the build, but for information on the hardware you’ll want to read through the comments over on the Reddit Astronomy thread. Sounds like the scope itself cost over 100 grand so having a proper building to protect it is a must.

Building A Radio Telescope For A School Science Project

The image above is a picture of  Hydrogen emissions from our galaxy. The cool thing about this picture is it wasn’t taken with millions of dollars worth of equipment; instead, only a few hundred dollars worth of ham radio gear was needed to get a picture of the Milky Way. [Shanni Prutchi], with the help of her dad [David] built this radio telescope in 5th grade, and even gave a presentation on this build at the National Radio Astronomy Observatory.

Instead of a gigantic satellite dish, [Shanni] used a loop yagi antenna to collect radio signals in the 1420 MHz band. These signals are amplified, filtered, and sent to an ICOM IC R-7000 receiver specially modified by [Shanni]’s dad for radio astronomy.

After her telescope saw first light, [Shanni] and [David] decided to use their brand new toy to detect the passage of the sun. At around 10:00 am they pointed the telescope at where the sun would be at 1:30 pm. For the next few hours, the telescope gathered and integrated radio signals to make an awesome graph. Yep, [Shanni]’s scope can detect radio waves coming directly from the sun.

Like a lot of us, [Shanni] was very much influenced by the movie Contact, something we brought up last week in a post on software-defined radio telescopes. This telescope was built in 2005, meaning [Shanni] couldn’t take advantage of any of the new advances in cheap software radios. We’re still waiting for someone to throw a Realtek SDR telescope together, so if you’ve got one send it in

A Quick Kludge To View The Transit Of Venus

[Justin] is a bit of an astronomy geek, but that doesn’t mean he’s always prepared for celestial phenomena. When he realized the May 20th annular eclipse was only a few days away, [Justin] dropped everything, built a pinhole solar viewer, and drove three hours for the best view of the eclipse. He learned something watching the eclipse; these sort of things sneak up on you, and you really need to plan ahead if you want to truly enjoy the music of the celestial spheres. After the eclipse, [Justin] set to work building a filter to watch a Venusian eclipse with his telescope.

If [Justin] pointed his 8 inch Schmidt–Cassegrain directly at the sun, he would most likely damage the optics in his ‘scope, burn several retinas, and other very, very bad things. The best way to view the Sun with a telescope is with an expensive Hydrogen alpha or a general solar filter, but these are expensive and the clock was rapidly ticking down to the transit of Venus. After reading that blocking most of the light from coming into the ‘scope, [Justin] built an aperature reducer out of a few bits of foam board, foil, and dark fleece.

How did viewing the transit with a telescope turn out? Well, if you don’t compare [Justin]’s pictures to the multi-million dollar toys NASA and astronomers have, pretty good. It’s a very good job considering the entire foam-core aperture reducer was built in the course of an evening.

While it may be a little early to be planning for the next Venusian transit in the year 2117, there will be a transit of Mercury on May 9, 2016. All [Justin] has to do is remember when it will happen.

Seeing The Venus Transit; This Is Why You Should Visit Your Local Hackerspace

So I thought about getting a pair of protective glasses so that I could safely stare at the sun during yesterday’s Venus transit. But then it was forecast to be cloudy in the afternoon (the event didn’t start until 5pm here) so I forgot about it and figured I’d try to catch it next time around (which is 105 years from now).

I went about life, ate some dinner, then grabbed my latest project and headed off to the monthly meeting at Sector67, the local Hackerspace in Madison, WI. Lo and behold I arrived to find this sight in the parking lot:

Sure, my priorities may have pushed the viewing to the side. But others made it their mission to see the once or twice in a lifetime event and I got to see it just for being in the same place as them. This is the meat and potatoes of Hackerspaces…. collaboration. A source of new ideas, motivations, and inspirations.

One of the members brought a telescope and went online to figure out how to safely use it for viewing. For about $2.50 he rigged up a funnel covered with a piece of acetate which interfaced with the eyepiece of the scope. The image at the top shows the entire sun, and even though some of the cloud cover can clearly be seen, there’s Venus, plain as day. The cardboard box is just providing a shaded viewing area around the funnel. As with most cosmic experiences, it surprised me by being way cooler than described. See a few extra pictures in the gallery after the break.

Continue reading “Seeing The Venus Transit; This Is Why You Should Visit Your Local Hackerspace”

Automated Sky Tracking To Catch UFOs

If you were to try to take a picture of a UFO, how would you do it? Sit by the side of a road in Nevada near Area 51? Pie tin on a string? A French team of UFO enthusiasts put together an automated UFO detection device (Google translate) out of a disco light and CCTV camera so long nights of watching the skies can be automated.

The build uses a disco light with an altitude and azimuth mount to constantly scan the skies on the lookout for strange, unexplained lights. Attached to this swiveling mount is a camcorder and a CCTV camera that streams video to the command and control laptops for image analysis.

In addition to object tracking, there’s also a diffraction grating in front of the CCTV camera. The team behind this project previously used this for some very low tech spectroscopy (translation) to identify emission lines in a light source. Light that have a signature including Oxygen and Nitrogen will probably be ionized air, while less common elements may be the signature of “advanced propulsion.”

While this build is going to detect a lot of satellites and meteors, there’s a definite possibility of capturing an unexplained phenomenon on video.