Electric Motors Run Continuously At Near-Peak Power

For a lot of electrical and mechanical machines, there are nominal and peak ratings for energy output or input. If you’re in marketing or advertising, you’ll typically look at the peak rating and move on with your day. But engineers need to know that most things can only operate long term at a fraction of this peak rating, whether it’s a power supply in a computer, a controller on an ebike, or the converter on a wind turbine. But this electric motor system has a unique cooling setup allowing it to function at nearly full peak rating for an unlimited amount of time.

The motor, called the Super Continuous Torque motor built by German automotive manufacturer Mahle is capable of 92% of its peak output power thanks to a unique oil cooling system which is able to remove heat and a rapid rate. Heat is the major limiter for machines like this; typically when operating at a peak rating a motor would need to reduce power output to cool down so that major components don’t start melting or otherwise failing. Given that the largest of these motors have output power ratings of around 700 horsepower, that’s quite an impressive benchmark.

The motor is meant for use in passenger vehicles but also tractor-trailer style trucks, where a motor able to operate at its peak rating would mean a smaller size motor or less weight or both, making them easier to fit into the space available as well as being more economically viable. Mahle is reporting that these motors are ready for production so we should be seeing them help ease the transportation industry into electrification. If you’re more concerned about range than output power, though, there’s a solution there as well so you don’t have to be stuck behind the times with fossil fuels forever.

Thanks to [john] for the tip!

Trick Your (1970) Pickup Truck

[Dave] wanted an old pickup, and he found a GMC Sierra Grande truck vintage 1970. While it had an unusual amount of options, there weren’t that many high-tech options over 50 years ago. The five-year-long restoration work was impressive, as you can see in the video below, but we were really interested in the electronics part. As [Dave] mentions, the truck was made when the Saturn V was taking people to the moon, but after his modifications, the truck has a lot more computing power than the famous rocket.

He was concerned that the taillights were not up to modern standards and that it would be too easy for someone using their cell phone to plow into the rear of the truck. So he broke out an ESP32 and some LEDs and made an attractive brake light that would have been a high-tech marvel in 1970.

Continue reading “Trick Your (1970) Pickup Truck”

A white cargo van drives over a black asphalt road. An "x-ray" illustration shows the inductive coils inside the road as it drives over them.

Charging While Driving Now Possible In Michigan

Heavy vehicles like semi trucks pose a bigger challenge in electrifying the transportation fleet than smaller, more aerodynamic passenger cars. Michigan now has the first public in-road charging system in the United States to help alleviate this concern. [via Electrek]

Electreon, a company already active in Europe, won the contract to provide for the inductive coil-based charging system at the new Michigan Central Station research campus. Initial runs will be with a Ford E-Transit for testing, but there are plans to actually allow public use along the one mile (1.6 km) route in the near future.

Vehicles using the system need a special receiver, so we hope we’ll be seeing an open standard develop instead of having to have a different receiver for each road you drive on. This seems like it would be a more onerous swap than having to have three different toll road transponders. Unfortunately, the page about wireless standards on the Electreon website currently 404s, but CharIN, the standards body behind the Combined Charging Standard (CCS) did just launch a task force for wireless power delivery in September.

If you’re curious about other efforts at on-road charging, check out this slot car system in Sweden or another using pantographs.

 

3D Printed Dump Truck Carries Teeny Loads

What do you do when you already have a neat little radio-controlled skid-steer loader? Well, if you’re [ProfessorBoots], you build a neat little dump truck to match!

The dump truck is built out of 3D printed components, and has proportions akin to a heavy-duty mining hauler. The dump bed and wheels were oversized relative to the rest of the body to give it a more cartoonish look.

An ESP32 is the brains of the operation. The build is powered by a nifty little 3.6 V rechargeable lithium-ion battery with an integral Micro USB charge port. It’s paired with a boost converter to provide a higher voltage for the servos and motors. Drive is to the rear wheels, thanks to a small DC gear motor. Unlike previous skid-steer designs from [ProfessorBoots], this truck has proper servo-controlled steering. The printed tires are wrapped in rubber o-rings, which is a neat way to make wheels that grip without a lot of fuss. The truck also has a fully-functional dump bed, which looks great fun to play with.

The final build pairs great with the loader that [ProfessorBoots] built previously.

Continue reading “3D Printed Dump Truck Carries Teeny Loads”

Is This The World’s Largest Dot Matrix Printer?

[RyderCalmDown] was watching a road painting vehicle lay down fresh stripes on the road one day and started thinking about the mechanism that lets it paint stripes in such a precise way. Effectively the system that paints the interspersed lines acts as a dot matrix printer that can only print at a single frequency. With enough of these systems on the same vehicle, and a little bit more fine control of when the solenoids activate and deactivate, [RyderCalmDown] decided to build this device on the back of his truck which can paint words on a roadway as he drives by. (Video, embedded below.)

Of course, he’s not using actual paint for this one; that might be prohibitively expensive and likely violate a few laws. Instead he’s using a water-based system which only leaves temporary lettering on the pavement. To accomplish this he’s rigged up a series of solenoids attached to a hitch-mounted cargo rack. A pump delivers water to each of the solenoids, and a series of relays wired to a Raspberry Pi controls the precise timing needed to make sure the device can print readable letters in much the same way a dot matrix printer works. There’s an algorithm running that converts the inputted text to the pattern needed for the dot matrix, and after a little bit of troubleshooting it’s ready for print.

Even though the printer works fairly well, [RyderCalmDown] had a problem thinking of things to write out on the roadways using this system, but it’s an impressive build based around a unique idea nonetheless. Dot matrix printers, despite being mostly obsolete, have a somewhat vintage aesthetic that plenty of people still find desirable and recreate them in plenty of other ways as well, like this 3D printer that was modified to produce dot matrix artwork.

Continue reading “Is This The World’s Largest Dot Matrix Printer?”

A red Tesla Model 3 converted into a pickup truck with a black lumber rack extending over the roof of the cab sits in a grey garage. A black and silver charging robot is approaching its charging port from the right side attached to a black cable. The charging bot is mostly a series of tubes attached to a wheeled platform and the charging connector itself is attached to a linear actuator to insert the charging device.

Truckla Gets An Open Source Charging Buddy

More than three years have passed since Tesla announced its Cybertruck, and while not a one has been delivered, the first Tesla truck, Truckla, has kept on truckin’. [Simone Giertz] just posted an update of what Truckla has been up to since it was built.

[Giertz] and friend’s DIT (do-it-together) truck was something of an internet sensation when it was revealed several months before the official Tesla Cybertruck. As with many of our own projects, while it was technically done, it still had some rough edges that kept it from being truly finished, like a lack of proper waterproofing or a tailgate that didn’t fold.

Deciding enough was enough, [Giertz] brought Truckla to [Marcos Ramirez] and [Ross Huber] to fix the waterproofing and broken tailgate while she went to [Viam Labs] to build Chargla, an Open Source charging bot for Truckla. The charging bot uses a linear actuator on a rover platform to dock with the charging port and is guided by a computer vision system. Two Raspberry Pis power handle the processing for the operation. We’re anxious to see what’s next in [Giertz]’s quest of “picking up the broken promises of the car world.”

If you want to see some more EV charger hacks, check out this Arduino-Based charger and the J1772 Hydra.

Continue reading “Truckla Gets An Open Source Charging Buddy”

A grey car sits in the background out of focus, its front facing the camera. It sits over an asphalt roadway with a metal rail extending from the foreground to behind the car in the distance. The rail has a two parallel slots and screws surrounding the slots running down the rail.

What Happened To Sweden’s Slot Car EV Road?

Many EVs can charge 80% of their battery in a matter of minutes, but for some applications range anxiety and charge time are still a concern. One possible solution is an embedded electrical rail in the road like the [eRoadArlanda] that Sweden unveiled in 2016.

Overhead electrical wires like those used in trolleys have been around since the 1800s, and there have been some tests with inductive coils in the roadway, but the 2 km [eRoadArlanda] takes the concept of the slot car to the next level. The top of the rail is grounded while the live conductor is kept well underground beneath the two parallel slots. Power is only delivered when a vehicle passes over the rail with a retractable contactor, reducing danger for pedestrians, animals, and other vehicles.

One of the big advantages of this technology being in the road bed is that both passenger and commercial vehicles could use it unlike an overhead wire system that would require some seriously tall pantographs for your family car. Testing over several Swedish winters shows that the system can shed snow and ice as well as rain and other road debris.

Unfortunately, the project’s website has gone dark, and the project manager didn’t respond when we reached out for comment. If there are any readers in Sweden with an update, let us know in the comments!

We’ve covered both overhead wire and embedded inductive coil power systems here before if you’re interested in EV driving with (virtually) unlimited range.

Continue reading “What Happened To Sweden’s Slot Car EV Road?”