Using diodes and transistors as solar cells

When you get down to it, solar cells aren’t much different from the diodes and transistors in your parts drawers or inside your beloved electronics. They’re both made of silicon or some other semiconductor, and surprisingly can produce electricity in the presence of light. Here’s two semiconductors-as-solar panel projects that rolled into the tip line over the past few days.

[Steven Dufresne] cut open a 2N3055 power transistor to expose the semiconductor material to light. In full sunlight, he was able to produce 500 millivolts and 5.5 milliamps. In other words, he’d need around 5000 of these transistors wired up to turn on a compact fluorescent light bulb. A small calculator has a much lower power requirement, so after opening up five transistors he was able to make a solar-powered calculator with a handful of transistors.

[Sarang] was studying solar cells and realized a standard silicon diode is very similar; both are p-n junctions and the only real difference is the surface area. He connected a 1N4148 to a multimeter and to his surprise it worked. [Sarang] is able to get about 150 millivolts out of his diode with the help of a magnifying glass. While he doubts his diode is more efficient than a normal solar cell, he thinks it could be useful in low-cost, low power applications. We’re thinking this might be useful as a high-intensity light detector for a solar cooker or similar.

After the break, you can check out the videos [Steven] and [Sarang] put up demonstrating their solar cells.

[Read more...]

Solar charging a Buddha Machine

While having ambient music playing in the background can lead to a more relaxed state of mind, we can’t imagine the annoyance of having to replace the batteries constantly. Thankfully, [Phil] added solar charging to his Buddha Machine so he won’t have to worry about batteries anymore.

If you’re not familiar, the Buddha Machine is a small plastic box that loops nine tracks of ambient music inspired the Buddhist temples of south-east Asia. There’s not much to these little boxes; they’re just a plastic box with a speaker, on/off knob and an EEPROM loaded up with samples of music.

A year or so ago, the people behind the Buddha Machine posted a prototype of a solar-powered meditative noise box that was unfortunately never made. Thankfully, [Phil Stearns] stepped in posted a guide on how to convert a AA-powered Buddha Machine to solar power.

The modification is incredibly simple: after replacing the disposable AA batteries with NiMH rechargeable, two wires are swapped connecting the battery compartment with the main PCB and the box is sealed up again. Now, whenever one of [Phil]‘s solar panels is connected to the power jack the batteries begin charging. [Phil] says he can get two days worth of runtime with a full 8-hour charge, so he shouldn’t need any batteries for his Buddha Machine anytime soon.

PVC Magnetometer to measure magnetic storms

In the hopes of getting a heads up on when the aurora borealis will be visible from his back yard, [Alex] built a magnetometer to measure disruptions in Earth’s magnetic field. The build is extremely simple, too. It’s amazing what you can build with a few components and a trip to the dollar store.

The design or [Alex]‘s project is called a torsion magnetometers. In this setup, two mirrors are affixed to a permanent magnet connected to a string. A laser is shone onto the mirror and is reflected back to an array of sensors. In [Alex]‘s case he used a simple laser pointer and a pair of photoresistors encased in a PVC tube.

[Alex] has been running his magnetometer in his back yard for over a month now and has the data to prove it. Luckily for [Alex], those graphs he has been generating may get a little more interesting. A coronal mass ejection is coming our way and is expected to hit today around 22:30 UTC. We’ll go outside to look for an aurora, but we’re sure [Alex] will be glued to his laptop tonight.

Check out the CGI visualization of [Alex]‘s magnetometer after the break

[Read more...]

DIY Fresnel reflector

Just like destroying an ant colony with a magnifying glass, there’s nothing like cooking hot dogs and roasting marshmallows with a nice parabolic reflector. Of course covering an old satellite dish with mylar or aluminum tape doesn’t take much skill, however cool it is. [Uwe] came up with a much more technical means of building a Fresnel reflector that will cook your hot dogs in seconds, but only on sunny days.

[Uwe] channeled a little bit of [Apollonius] when he realized that a flat cardboard ring with a section removed could be joined together into a conic section. The resulting section looks just like one concentric ring in a Fresnel reflector. [Uwe] wrote a small program in Visual Basic to calculate the necessary diameter and angle of his conic sections.

A bit of cardboard was cut out and pieced together with some very reflective aluminum tape. The resulting Fresnel reflector concentrates 117 times the normal solar radiation onto a small point. It’s more than enough to burn holes in construction paper, but we’ll be using a microwave for our lunch today.

DIY shade finder tool takes the tedium out of solar surveys

diy-shadefinder-tool

[Steven Dufresne] does a lot of tinkering with solar-powered applications, a hobby which can be very time consuming if done right. One process he carries out whenever building a solar installation is creating a sun chart to determine how much (or little) sun the target area will get.

The process requires [Steven] to take elevation and Azimuth measurements of many different points, which often consumes about half an hour of his time. While taking measurements recently, he started thinking about how he could improve the process, and came up with a stellar solution that reduces the process down to a one-minute task.

In short, his shade finder tool uses a pulley, a pair of rollerblade wheels, and a pencil to accomplish a full shade survey in under a minute. The science behind the tool is best explained by [Steven], so be sure to check out his site for plenty of details and diagrams.

We have to say that we’re extremely impressed by his shade finder – hopefully his work can help others maximize the efficiency of their solar solutions.

Stick around after the jump to see a short video of the shade finder in action.

[Read more...]

Video series shows how to build your own solar-charged R/C lawnmower

rc-solar-lawnmower

As winter is officially upon us, we’re pretty sure that the last thing most of you are thinking about is mowing your lawn. We would argue that it’s actually the ideal time to do so – that is, if you are interested in automating the process a bit.

[Robert Smith] has spent a lot of time thinking about his lawn, wanting a way to sit back and relax while doing his weekly trimming. He set off for the workshop to build an R/C electric lawnmower, and thoroughly documented the process in order to help you do the same.

On his web site, you will find a series of videos detailing every bit of the solar charged R/C lawnmower’s construction, taking you through the planning phases all the way to completion. [Robert] has provided just about anything you could possibly need including parts lists, schematics, code, and more.

If the short introductory video below has you interested, be sure to swing by his site for everything you need to build one of your own.

[Read more...]

Upgrading a solar lamp to charge an iPad

ikea_sunnan_upgrade

[Phillip] and the crew at Voltaic Systems took a look at the Sunnan solar powered desk lamp from IKEA a while back, and while they thought it was pretty useful, there were definitely some things they wanted to change.

First on their list of revisions was to increase the capacity of the stock battery pack. Taking the lamp apart and unscrewing the pack’s lid revealed a set of 3 AA cells, which they swapped out for higher-capacity models with more than double the watt-hour rating.

A beefed up battery is a good start, but the lamp’s tiny solar panel has no hope of topping off the batteries outside of Death Valley. To ensure that they get a nice full charge, a small jack was wired into to the battery pack, allowing the group to connect any size external solar panel they pleased.

Finally, [Phillip] and Co. wanted the ability to charge an iPad2 from the lamp’s battery pack. They hacked in a small USB connector and a slightly modified MintyBoost board to provide a little extra juice to their tablet.

While they are still testing the modifications, they say that everything is working nicely, citing that the extra battery capacity and charging abilities are a great addition.

Follow

Get every new post delivered to your Inbox.

Join 93,781 other followers