Wouldn’t Tweeting in Morse Code be More Like “Pecking”?

If you find yourself glued to social media and also wish to know Morse code… we can think of no better invention to help hone your skills than the Twitter Telegraph. This vintage to pop culture mashup by [Devon Elliott] is a recent project that uses a sounder from the 19th century to communicate incoming tweets with dots and dashes.

Back in the day when everyone was connected by wire, the sounder was a device on the receiving end of the telegraph which translated the incoming signal to an audible clicking. Two tall coils sat with a metal tab teetering between them. When electricity surged into one of the coils it would magnetize, pulling the tab downward in a pattern which mimicked the incoming current sent from the other end. [Devon] decided to liberate the sounder from its string-and-two-can origins and use a more modern source of input. By adding a FONA board which comes equipped with a SIM card, the device was capable of connecting and receiving data from the Internet. An Arduino is responsible for taking the data received and translating it into Morse code using the Mark Fickett’s Arduinomorse library, and then sending it out through an I/O pin to the sounder itself to be tapped.

The finished project is connected to a cellular network which it uses to receive SMS messages and tweets. By mentioning the handle @ldntelegraphco you can send the Twitter Telegraph your own message which will be tapped in code for everyone in the vicinity to hear… which is worth giving a try for those of you curious types. Lastly, if you have an interest in taking a look at the code for your own use, it is available on [Devon’s] github.

8 Bit Message in a Digital Bottle

As seasoned data-travelers, we’re used to wielding the internet to send messages and communicate to others without any limitations. No one has to be stranded on a figurative island blowing smoke signals… unless of course they wanted to be. What [Harm Alexander Aldick] has done with his project “Lorem Ipsum”, is create a situation where others can only communicate to him through a sort of message in a bottle. The bottle in this case is an electronic widget.

In this social experiment, [Harm] has stationed a small Ikea picture frame at his desk, which shows images and text sent to him in real-time from others in the world. With an Arduino as the brain, a small 8×8 LED matrix mounted at the bottom right of the frame displays the data received by means of an ethernet module. Anyone can use his web interface to modify the pixels of the matrix on a virtual version of the installation. Once sent, the message is transmitted through an IPv6 internet connection and is translated to UDP which the unit is controlled by.

[Harm]’s project investigates how people react when given the chance to send a message in complete anonymity to someone they don’t know… in of all things, the form of something as limited as 64 pixels. The project name “Lorem Ipsum” refers to the filler text used in graphic design to hold the place of what would otherwise be more meaningful information, so that it doesn’t detract from the experience of viewing the layout. Curious about what sort of ‘graphical experience’ I would come up with myself, I took a shot at punching away at [Harm’s] GUI. I got momentarily lost in turning the little red dots on and off and eventually turned out this little ditty:


It was supposed to be something of a triangle, yet turned into a crop circle… or pronged nipple. After it was sent, I wondered whether or not [Harm] actually saw it. In the case that he did, I can only imagine what I communicated to our fellow hacker abroad with my squall of dots. All of these thoughts though are the whole point of the project. Awesome work!

Sound card microcontroller/PC communication

The usual way send data from a microcontroller is either over RS-232 with MAX232 serial ICs, crystals, and a relatively ancient computer, or by bit-banging the USB protocol and worrying about driver issues. Not content with these solutions, [Scott] came up with sound card μC/PC communication that doesn’t require any extra components.

[Scott] bought a cheap USB sound card dongle on eBay (although a built-in sound card will do) and wired up the tip and ring of the plug to the microcontroller. The data is sent from the microcontroller a lot like Morse code – a short gap between pulses is a zero, a long gap is a one. This is parsed by a Python script using PyAudio. Synchronization, timing, and calibration is automatic because of a 10-bit ‘packet header’ explained in this video.

Continue reading “Sound card microcontroller/PC communication”