Chibikart: step-by-step lets you build your own tiny-wheel racer

[cHaRlEsg] posted a rant, then posted full instruction on how to build this electric go-kart for yourself.

Now the rant calls this an unobtainium-free sibling to the Chibikart. We’re sad to report that the unobtainium he’s talking about are the hyper-awesome hand-wound hub motors that powered the original kart which left us dumbstruck after seeing it for the first time. But look, few mortals have the skills and tools necessary to manufacture those circular marvels of modern engineering.

So you’ll just need to settle for stuff you can buy to assemble the tiny kart seen here. It’s all-electric, using two DC motors to power the rear wheels. You can catch it racing around the hallways in the video after the break. The only thing we can see missing from the equation (other than red shells and the like) is a helmet and bumpers (you’ll see why at the end of the clip).

[Read more...]

Motorized skateboard just begging to be your next project

You’re not going to be doing any flip-tricks with this board, but it’ll let you get around without getting sweaty. The ZBoard is a motorized skateboard which is in the pre-order stages thanks to a successful Kickstarter campaign. It’ll set you back $500 now or $600 later. With that kind of budget wouldn’t it be fun to build your own?

This base model can go about five miles or five hours between charges. It carries a seal lead-acid battery (really?) but if you upgrade to the pro model for just $250 more you get a LiFePo that doubles the range (but curiously not the run time). To make it go there are pressure sensitive foot pads on the front and rear of the deck. This allows you to go slow with just a bit of pressure, or put the pedal to the metal to get up to the 15 mph speed limit. It’s even got regenerative breaking to slow things down while giving a boost to the battery.

The idea is nothing new. But the cleanliness that this product brings to market is something to be respected. We’re hoping this sparks some inspiration for a rash of DIY clones, kind of like we’ve seen with the Segway.

[Read more...]

Self-balancing transport is Arduino-controlled

[Nick Thatcher] has built several iterations of a homebrew Segway, and the latest version is very impressive. When developing the project he figured there was just no way the thing would ever work, which led to its name, the No-way.

After the break you can catch a video of [Nick's] test-ride. Looks like the two-wheeler is ready for daily use. You can just make out a red kill-switch on the right side of the polycarbonate body. This lets you disconnect the power if things get out of hand, or just when you’re done riding it. But there is also a dead-man’s switch which we believe uses two sensors where your feet go on the enclosure’s top surface. The handle has some indicator lights built into it, as well as buttons under each thumb which are used for steering. Control circuitry includes an Arduino UNO which reads a gyroscope/accelerometer sensor board from SparkFun. Two 7.2 Ah batteries provide 24V for the pair of electric scooter motors that turn the wheel-barrow wheels.

We love looking at these Segway clone project. So if you’re working on one of your own don’t forget to document your progress!

[Read more...]

Video series shows how to build your own solar-charged R/C lawnmower

rc-solar-lawnmower

As winter is officially upon us, we’re pretty sure that the last thing most of you are thinking about is mowing your lawn. We would argue that it’s actually the ideal time to do so – that is, if you are interested in automating the process a bit.

[Robert Smith] has spent a lot of time thinking about his lawn, wanting a way to sit back and relax while doing his weekly trimming. He set off for the workshop to build an R/C electric lawnmower, and thoroughly documented the process in order to help you do the same.

On his web site, you will find a series of videos detailing every bit of the solar charged R/C lawnmower’s construction, taking you through the planning phases all the way to completion. [Robert] has provided just about anything you could possibly need including parts lists, schematics, code, and more.

If the short introductory video below has you interested, be sure to swing by his site for everything you need to build one of your own.

[Read more...]

Retrofitting modern LEGO train tracks for use with older version

So you’re really looking for that [Norman Rockwell] Christmas and want to set up your train to encircle the Christmas tree this year. The problem is that all you’ve got is an old LEGO train set and not enough track for it. You can’t just buy some more, because the technology has changed; or can you?

[Chris] was dismayed to find that newer LEGO train sets have gone to battery operation rather than drawing power through metal tracks. The new tracks are plastic, and buying extra segments of the older version is cost prohibitive. He figured out a way to add power conductors to the new track pieces.

It turns out the design of the new tracks matches the old, except they’re all in plastic instead of having metal rails. He bought a plastic add-on set, then picked up some copper foil from the hobby store which is meant for stained-glass work. It’s adhesive backed, and after working out the best way to apply it, he coated the rails with the stuff. As you can see above, the new mates perfectly with the old, and keeps that locomotive chugging along.

If you’ve got copper foil left over after this hack, there’s tons of other uses for it. Perhaps building your own flex sensors is worth a try.

Washing machine powered bike

[Ameres Valentin] was looking for a less expensive way to get around after spending in excess of 100 Euros a month on public transportation in Munich. His solution is an electric bicycle powered by a washing machine motor. It’s a 300 Watt motor that runs on 24 Volts, capable of around 3000 RPM. We’re used to seeing hub motors or chain drives on electric vehicle hacks, but it looks like [Ameres] is using a flywheel on the motor shaft to drive the rear wheel of the bike through direct contact.

Inside the saddle bag you’ll find two 12 volt 12 amp hour sealed lead acid batteries which are used in series. It looks like he charges these with a wall wart (that we think might use a switching power supply) modified with a couple of large alligator clamps. A push button mounted on the handlebars makes it go.We wonder if he’s still able to pedal when the batteries are running low? We don’t see a way to disengage the motor from the rear wheel so we’d bet this is something of an issue. Then again, if that charge actually works you’re never far from an opportunity to top off the batteries.

Check out a quick clip of the motor spinning the wheel embedded after the break.

[Read more...]

Monkey-powered scooter is all electric

[Knife141] lets this monkey push him around all day long. It’s a whimsical touch for his scratch-built electric scooter. He started the build without a set of plans, cutting angle iron and clamping it together until the frame looked about right. Once the welding was done, he began adding all the parts to make it functional. There are front and rear brakes, operated by a lever on the handlebars. The rear wheel has a sprocket bolted to it, along with some spacers to give the chain adequate clearance.

Inside the saddle enclosure you’ll find a set of three lead-acid batteries. These are 12 volt 10 amp models that provide 36 volts of juice to the electric motor. The only thing we know about the electronics is that both the motor and the controller were purchased at a surplus store.

The sock monkey that pushes him around is sort of an afterthought. But since it’s just a couple of wheels with the feet attached, this might make a fun project for the kids to add to a bike.

Follow

Get every new post delivered to your Inbox.

Join 94,072 other followers