Hackaday Prize Entry: Hydroponic Garden Control

[Todd Christell] grows tomatoes in hydroponic buckets in his backyard, and recently he suffered a crop loss when a mechanical timer failed to dispense the nutrient flow as directed. He decided the solution was to add a sensor array to his home network.

[Todd]’s home automation setup runs on a Raspberry Pi loaded with Jessie OS and Node-Red, with Mosquitto as his MQTT message broker. With a sensor network in place, [Todd] would get updates on his phone alerting him if there was a problem with the pumps or if the nutrient bath was getting too low.

The proposed hydroponic setup would consist of an ESP8266-12 equipped with a DS18B20 waterproof temperature sensor, a reed sensor detecting nutrient levels, and a relay board triggering one pump to fill the grow buckets from the main sump and another to top off the sump with the solution from a reserve tank. One early problem he encountered was the electric fence (pictured above) that he employs to keep squirrels away from his tomatoes, interfered with the ESP8266’s signal.

Robot Car Follows Wherever You Go

Having a pet can really make a difference to your happiness at the end of the day, but they’re also a lot of work. This project by [Ioannis Stoltidis] does something similar — minus all the responsibility. The Smart Car Follower Project is designed to track people using Bluetooth and IR and follow them around from room to room.

Submitted as part of a Master’s thesis, this project hacks a toy car and uses a key chain transmitter that sends the tracking signals. A Raspberry Pi 3 combines the Bluetooth RSSI and IR signals to make create an estimate of the position of the beacon. Arduinos facilitate the IR signaling as well as the motor control allowing the robot to chase the user around like a puppy. The whole thing also comes with obstacle avoidance using ultrasonic sensors on all sides which are good if you have a lot of furniture in the house.

You can also choose to go manual-mode and drive it around the block using a PC and gamepad. A webcam connected to the onboard computer allows a first person view of the vehicle by sending the video feed over wifi to a PC application. OpenCV is used to create the final GUI which allows you to see and control the project remotely. The source code is available for download for anyone who wants to replicate the project. Check out the video of it in action below.

Continue reading “Robot Car Follows Wherever You Go”

Old Intercom Gets Googled with Raspberry Pi and AIY Hat

Old Radio Shack intercom; brand new Google Voice interface for a Raspberry Pi. One of these things is not like the other, but they ended up together in this retro-look Google Voice interface, and the results are pretty slick.

The recipient of the Google hive-mind transplant was one of three wireless FM intercoms [MisterM] scored for a measly £4. Looking much as they did when they were the must-have office tool or home accessory for your modern mid-80s lifestyle, the intercom case was the perfect host for the Pi and the Google AIY hat. Only the case was used — not even the original speaker made it into the finished product. The case got a good scrubbing, a fresh coat of paint to perk up the gone-green plastic, and an accent strip of Google’s logo colors over the now-deprecated station selector switch. [MisterM] provided a white LED behind the speaker grille for subtle feedback. A tap of the original talk bar gets Google’s attention for answers to quick questions, and integration into the family’s existing home automation platform turns the lights on and off. See it in action after the break.

[MisterM] was lucky enough to score an AIY hat for free, and as far as we know they’re still hard to come by. If you’re itching to try out the board, fear not — turns out you can roll your own.

Continue reading “Old Intercom Gets Googled with Raspberry Pi and AIY Hat”

Raspberry Pi Trackpad From Salvaged Trackpad Plus Arduino

Old laptops are easy to find and many have a trackpad with a PS/2 interface hardwired into the guts of the laptop. [Build It] wanted one of those trackpads for use in the DIY Raspberry Pi laptop he’s working on. But the Raspberry Pi has no PS/2 input, and he read that a PS/2 to USB adapter wouldn’t be reliable enough. His solution? Wire the trackpad to an Arduino and have the Arduino convert the trackpad’s PS/2 to USB.

After removing a few screws, he had the trackpad free of the laptop. Looking up the trackpad’s part number online he found the solder pads for data, clock and five volts. He soldered his own wires to them, as well as to the trackpad’s ground plane, and from there to his Arduino Pro Micro. After installing the Arduino PS/2 mouse and the Mouse and Keyboard libraries he wrote some code (see his Instructables page). The finishing touch was to use generous helpings of hot glue to secure all the wires, as well as the Arduino, to the back to the trackpad. By plugging a USB cable into the Arduino, he now had a trackpad that could plug in anywhere as a USB trackpad. Watch [Build It] put it all together step-by-step in the video below.

Continue reading “Raspberry Pi Trackpad From Salvaged Trackpad Plus Arduino”

Almost An Amiga For Not A Lot

If you ask someone old enough to have been a computer user in the 16-bit era what machine they had, you’ll receive a variety of answers mentioning Commodore, Atari, Apple, or even PC brands. If your informant lay in the Commodore camp though, you’ll probably have an impassioned tale about their Amiga, its capabilities, and how it was a clearly superior platform whose potential was wasted. The Amiga was for a while one of the most capable commonly available computers, and became something of a cult within its own lifetime despite the truly dismal performance of the various companies that owned it. Today it retains one of the most active retro computer scenes, has an active software community, and even sees new hardware appearing.

For Amiga enthusiasts without the eye-watering sums required to secure one of the new Amiga-compatible machines with a PowerPC or similar at its heart, the only option to relive the glory beside finding an original machine is to run an emulator. [Marco Chiapetta] takes us through this process using a Raspberry Pi, and produces an Amiga that’s close enough to the real thing to satisfy most misty-eyed enthusiasts.

He starts with a cutesy Amiga-themed Raspberry Pi case that while it’s not essential for the build, makes an entirely appropriate statement about his new machine, We’re taken through the set-up of the Amibian emulator distro, then locating a set of Amiga ROMs. Fortunately that last step is easier than you might think, even without trawling for an illicit copy.

The result is an Amiga. OK, it’s not an Amiga, but without the classic Commodore logo is it any more not an Amiga than some of the other non-branded Amiga-compatible boards out there? Less talking, more classic gaming!

We’ve covered quite a few Amigas on these pages. Getting an A500 online was the subject of a recent post, and we brought you news of a new graphics card for the big-box Amiga’s Zorro slot.

Hackaday Prize Entry: Dongle For A Headless Pi

Mass production means that there’s a lot of great hardware out there for dirt cheap. But it also means that the manufacturer isn’t going to spend years working on the firmware to squeeze every last feature out of it. Nope, that’s up to us.

[deqing] took a Bluetooth Low Energy / USB dongle and re-vamped the firmware to turn it into a remote keyboard and mouse, and then wrote a phone app to control it. The result? Plug the USB dongle in, and the computer thinks it sees a keyboard and mouse. Connect the phone via BLE, and you’re typing — even if you don’t have your trusty Model F by your side.

[Deqing] points out that ergonomics and latency will make you hate using this in the long term, but it’s just meant to work until you’ve got SSH up and running on that headless single-board Linux thing. If you’ve ever worked with the USB or BLE specifications, you can appreciate that there’s a bit of work behind the scenes in making everything plug and play, and the web-based interface is admirably slick.

Kudos, [deqing]!

Hackaday Links: July 16, 2017

[Carl Bass] has joined the board at Formlabs. This is interesting, and further proof that Print The Legend is now absurdly out of date and should not be used as evidence of anything in the world of 3D printing.

Here’s something cool: a breadboardable dev board for the Parallax Propeller.

Finally, after years of hard work, there’s a change.org petition to stop me. I must congratulate [Peter] for the wonderful graphic for this petition.

Want some flexible circuits? OSHPark is testing something out. If you have an idea for a circuit that would look good on Kapton instead of FR4, shoot OSHPark an email.

SeeMeCNC has some new digs. SeeMeCNC are the creators of the awesome Rostock Max 3D printer and hosts of the Midwest RepRap Festival every March. If you’ve attended MRRF, you’re probably aware their old shop was a bit on the small side. As far as I can figure, they’ll soon have ten times the space as the old shop. What does this mean for the future of MRRF? Probably not much; we’ll find out in February or something.

Rumors of SoundCloud’s impending demise abound. There is some speculation that SoundCloud simply won’t exist by this time next year. There’s a lot of data on the SoundCloud servers, and when it comes to preserving our digital heritage, the Internet Archive (and [Jason Scott]) are the go-to people. Unfortunately, it’s going to cost a fortune to back up SoundCloud, and it would be (one of?) the largest projects the archive team has ever undertaken. Here’s your donation link.

If you’re looking for a place to buy a Raspberry Pi Zero or a Pi Zero W, there’s the Pi Locator, a site that pings stores and tells you where these computers are in stock. Now this site has been expanded to compare the price and stock of 2200 products from ModMyPi, ThePiHut, Pi-Supply, and Kubii.