Print Your Own Brain Lamp From MRI Data

MRIs generally fall somewhere on the scale from boring to stressful depending on why you’re having one and how claustrophobic you get. Regardless, they’re a wonderful diagnostic tool and they’ve saved thousands if not millions of lives over the years. In a fun use of the technology, [mandalaFractals] has shown us how to make a 3D-printed brain lamp using an MRI scan of the head.

The build starts with an off-the-shelf lamp base and a smart LED bulb as the light source, though you could swap those out as desired for something like a microcontroller, a USB power supply, and addressable LEDs if you were so inclined. The software package Slicer is then used to take an MRI brain scan and turn it into something that you can actually 3D print. It’ll take some cleaning up to remove artifacts and hollow it out, but it’s straightforward enough to get a decent brain model out of the data. Alternatively, you can use someone else’s if you don’t have your own scan. Then, all you have to do is print it in a couple of halves, and pop it on the lamp base, and you’re done!

It’s a pretty neat build. Who wouldn’t love telling their friends that their new brain lamp was an accurate representation of their own grey noodles, after all? It could be a fun gift next time Halloween rolls around, too!

Meanwhile, if you’ve got your own MRI hacks that you’ve been cooking up, don’t hesitate to let us know!

Cat-o-Matic 3000 Serves Your Feline Masters

When you have three cats and three humans, you have one problem: feeding them on a schedule without over or under feeding them. Even if there was only one human in the equation, the Cat-o-Matic 3000 would still be a useful tool.

Essentially, it’s a traffic light for cats — where green means you are go for feeding, and red means the cat was just fed. Yellow, of course, means the cat is either half-full or half-empty, depending on your outlook.

The brains of this operation is an ATmega88PA leftover from another project. There’s a no-name voltage regulator that steps up the two AA cells to 5 volts. Timing comes from a 32 kHz crystal that allows the microcontroller to stay in power-saving sleep mode for long periods of time.

Creator [0xCAFEAFFE] says the firmware was cobbled together from other projects. Essentially, it wakes up once per second to increment the uptime counter and then goes back to sleep. Short-pressing a button shows the feeding status, and long-pressing it will reset the timer.

Wanna make a cat status indicator without electronics? Give flexures a try.

Robot Pianist Runs On Arduino Nano

The piano has been around for a long time now. Not long after its invention, humans started contemplating how they could avoid playing it by getting a machine to do the job instead. [vicenzobit] is the latest to take on this task, building a “Robot Pianista” that uses a simple mechanism to play a tune under electronic command (Spanish language, Google Translate link).

An Arduino Nano is the heart of the build, paired with a shield that lets it run a number of servo motors. The servos, one per key, are each assembled into a 3D-printed bracket with a cam-driven rod assembly. When the servo turns, the cam turns, and pushes down a rod that presses the piano key.

The build is limited in the sense that you can only play as many keys as you have servo channels, but nonetheless, it does the job. With eight servos, it’s able to play a decent rendition of Ode to Joy at a steady tempo, and that’s an excellent start.

We’ve featured some great mechanized instruments before, too. Video after the break.

Continue reading “Robot Pianist Runs On Arduino Nano”

Radio Emissions Over Sunspots Challenge Models Of Stellar Magnetism

Sustained radio emissions originating from high over a sunspot are getting researchers thinking in new directions. Unlike solar radio bursts — which typically last only minutes or hours — these have persisted for over a week. They resemble auroral radio emissions observed in planetary magnetospheres and some stars, but seeing them from about 40,000 km above a sunspot is something new. They don’t seem tied to solar flare activity, either.

The signals are thought to be the result of electron cyclotron maser (ECM) emissions, which involves how electrons act in converging geometries of magnetic fields. These prolonged emissions challenge existing models and ideas about how solar and stellar magnetic processes unfold, and understanding it better could lead to a re-evaluation of existing astrophysical models. Perhaps even leading to new insights into the behavior of magnetic fields and energetic particles.

This phenomenon was observed from our very own sun, but it has implications for better understanding distant stellar bodies. Speaking of our sun, did you know it is currently in it’s 25th Solar Cycle? Check out that link for a reminder of the things the awesome power of our local star is actually capable of under the right circumstances.

Wine Is For Windows And Darling Is For MacOS

Wine has become a highly optimized and useful piece of software for those that live in Linux, but occasionally need to walk on the Windows side. In case you’d wondered, there’s a similar tool for when you need to run a MacOS program in your Linux environment. Enter Darling, the translation layer you’ve needed all along.

Just as Wine is not an emulator, nor is Darling. As a translation layer, it duplicates functions of the MacOS operating system that programs need to operate but within Linux. It’s fast, because it’s effectively running the MacOS software directly. Initially, Darling was mostly only capable of running MacOS apps at the console level. However, there is rudimentary support for running graphical applications that are based on the Cocoa framework.

Hilariously, if you’re into weird recursive situations, you can go deeper and run Darling within Windows Subsystem for Linux, itself running within Windows. Why? Well, you’re probably bored or just trying to for the sake of it. Regardless, we don’t judge. If you’ve got your own nifty translation or virtual machine hacks in the works, don’t hesitate to let us know!

The Sunspots Are Coming (Again)

There are a bunch of ways to estimate the age of a radio amateur, by the letters in their callsign, by their preferred choice of homebrewing technology, or sometimes by their operating style. One that perhaps doesn’t immediately come to mind is to count how many solar cycles they remember, and since the current cycle 25 is my fourth I guess I’ve seen a few. Cycle 25 is so far shaping up to be quite an active one especially of late, which popular media are describing as bombarding us with flares from a “sunspot archipelago” and the more measured tones of spaceweather.com giving us warning of X-class flares heading in our direction, today!

Jean-Claude Roy, VP, Hydro Quebec
We wouldn’t be this guy for anything. From CBC’s coverage of the 1989 power outage.

As the technology for solar observation has increased in sophistication and the Internet has allowed anyone to follow the events above us as they unfold, the awareness of solar phenomena has shifted away from the relatively small numbers of astronomers and radio amateurs who would once have been eagerly awaiting a solar cycle to a wider audience. Ever since a particularly severe event in March 1989  during cycle 22 caused disruptions including the blackout of a significant part of Canada it’s been a periodic topic of mild doom in slow news moments. But what lies behind the reports of solar activity? Perhaps it’s time to take a look.

The solar cycle refers to the 11-year period of solar activity from a maximum of observed sunspots through a minimum to a new maximum. The sunspots are the visible evidence of the solar magnetic field changing its polarity, and appear as darker areas where there is a greater strength of magnetic flux in the sun’s photosphere. We refer to solar cycles by number with solar cycle 1 occurring in 1755 because that year represents the earliest cycle which can be found in modern astronomical observation data, but previous cycles have been deduced over millennia through dendrochronology, sediment analysis, isotope observations, and other methods. Continue reading “The Sunspots Are Coming (Again)”

Hackaday Podcast Episode 246: Bypassing Fingerprint Readers Is Easy, Killing Memory Chips Is Hard, Cell Phones Vs Sperm

It’s the week after Thanksgiving (for some of us) and if you’re sick of leftovers, you’re in luck as Elliot and Dan get together to discuss the freshest and best inter-holiday hacks. We’ll cue up the “Mission: Impossible” theme for a self-destructing flash drive with a surprising sense of self-preservation, listen in on ET only to find out it’s just a meteor, and look for interesting things to do with an old 3D printer. We’ll do a poking around a little in the basement at Tektronix, see how easy it is to spoof biometric security, and get into a love-hate relationship with both binary G-code and bowling balls with strings attached. What do you do with a box full of 18650s? Easy — make a huge PCB to balance them the slow way. Is your cell phone causing a population crisis? Is art real or AI? And what the heck is a cannibal CME? Tune in as we dive into all this and more.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Grab a copy for yourself if you want to listen offline.

Continue reading “Hackaday Podcast Episode 246: Bypassing Fingerprint Readers Is Easy, Killing Memory Chips Is Hard, Cell Phones Vs Sperm”