Laptop GPU Upgrade With Just A Little Reballing

Modern gaming laptops are in an uncomfortable spot – often too underpowered for newest titles, but too bulky to be genuinely portable. It doesn’t help they’re not often upgradeable, so you’re stuck with what you’ve bought – unless, say, you’re a hacker equipped some tools for PCB reflow? If that’s the case, welcome to [TechModLab]’s video showing you the process of upgrading a laptop’s soldered-on NVIDIA GPU, replacing the 3070 chip with a 3080.

You don’t need much – the most exotic tool is a BGA rework station, holding the mainboard steady&stiff and heating a specific large chip on the board with an infrared lamp from above. This one is definitely a specialty tool, but we’ve seen hackers build their own. From there, some general soldering tools like flux and solder wick, a stencil for your chip, BGA balls, and a $20 USB-C hotplate are instrumental for reballing chips – tools you ought to have.

Reballing was perhaps the hardest step of the journey – instrumental for preparing the GPU before the transplant. Afterwards, only a few steps were needed – poking a BGA ball that didn’t connect, changing board straps to adjust for the new VRAM our enterprising hacker added alongside the upgrade, and playing with the driver process install a little. Use this method to upgrade from a lower-end binned GPU you’re stuck with, or perhaps to repair your laptop if artifacts start appearing – it’s a worthwhile reminder about methods that laptop repair shops use on the daily.

Itching to learn more about BGAs? You absolutely should read this article series by our own [Robin Kearey]. We’ve mostly seen reballing used for upgrading RAM on laptop and Raspberry Pi boards, but seeing it being used for an entire laptop is nice – it’s the same technique, just scaled up, and you always can start by practicing at a smaller scale. Now, it might feel like we’ve left the era of upgradable GPUs on laptops, and today’s project might not necessarily help your worries – but the Framework 16 definitely bucks the trend.

Continue reading “Laptop GPU Upgrade With Just A Little Reballing”

Voyager 2’s Plasma Spectrometer Turned Off In Power-Saving Measure

The Voyager 2 spacecraft’s energy budget keeps dropping by about 4 Watt/year, as the plutonium in its nuclear power source is steadily dropping as the isotope decays. With 4 Watt of power less to use by its systems per year, the decision was made to disable the plasma spectrometer (PLS) instrument. As also noted by the NASA Voyager 2 team on Twitter, this doesn’t leave the spacecraft completely blind to plasma in the interstellar medium as the plasma wave subsystem (PWS) is still active. The PLS was instrumental in determining in 2018 that Voyager 2 had in fact left the heliosphere and entered interstellar space. The PLS on Voyager 1 had already broken down in 1980 and was turned off in 2007.

After saving the Voyager 1 spacecraft the past months from a dud memory chip and switching between increasingly clogged up thrusters, it was now Voyager 2’s turn for a reminder of the relentless march of time and the encroaching end of the Voyager missions. Currently Voyager 2 still has four active instruments, but by the time the power runs out, they’ll both be limping along with a single instrument, probably somewhere in the 2030s if their incredible luck holds.

This incredible feat was enabled both by the hard work and brilliance of the generations of teams behind the two spacecraft, who keep coming up with new tricks to save power, and the simplicity of the radioisotope generators (RTGs) which keep both Voyagers powered and warm even in the depths of interstellar space.

MikroPhone – Open, Secure, Simple Smartphone

Modern smartphones try and provide a number of useful features to their users, and yet, they’re not exactly designed with human needs in mind. A store-bought smartphone will force a number of paradigms and features onto you no matter whether you want them, and, to top it off, it will encroach on your privacy and sell your data. It’s why self-built and hacker-friendly smartphone projects keep popping up, and the MikroPhone project fills a new niche for sure, with its LTE connectivity making it a promising option for all hackers frustrated with the utter state of smartphones today.

MikroPhone is open-source in every single aspect possible, and it’s designed to be privacy-friendly and easy to understand. At its core is a SiFive Freedom E310, a powerful RISC-V microcontroller – allowing for a feature phone-like OS that is easy to audit and hard to get bogged down by. You’re not limited to a feature phone OS, however – on the PCB, you will find a slot for an NXP i.MX8M-based module that can run a Linux-based mobile OS of your choice. MikroPhone’s display and touchscreen are shared between the Linux module and the onboard MCU, a trick that reminds us of the MCH2022 badge – you get as much “smartphone” as you currently need, no more, no less.

The cool features at MikroPhone’s core don’t end here. The MikroPhone has support for end-to-end encrypted communications, kept to its feature-phone layer, making for a high bar of privacy protection – even when the higher-power module might run an OS that you don’t necessarily fully trust. Currently, MikroPhone is a development platform, resembling the PinePhone’s Project Don’t Be Evil board back when PinePhone was just starting out, and just like with PinePhone, it wouldn’t be hard to minify this platform into a pocket-friendly form-factor, either. The PinePhone has famously become a decent smartphone replacement option in the hacker world, even helping kick off a few mobile OS projects and resulting in a trove of hacks to grace our pages.

Witch’s Staff Build Is A Rad Glowing Costume Prop

Let’s say you’re going to a music festival. You could just take water, sunscreen, and a hat. Or, you could take a rad glowing witch’s staff to really draw some eyes and have some fun. [MZandtheRaspberryPi] recently undertook just such a build for a friend and we love how it turned out.

The concept was to build a staff or cane with a big glowing orb on top. The aim was to 3D print the top as a very thin part so that LEDs inside could glow through it. Eventually, after much trial and error, the right combination of design and printer settings made this idea work. A Pi Pico W was then employed as the brains of the operation, driving a number of through-hole Neopixel LEDs sourced from Adafruit.

Power was courtesy of a long cable running out of the cane and to a USB power bank in the wielder’s pocket. Eventually, it was revealed this wasn’t ideal for dancing with the staff. Thus, an upgrade came in the form of an Adafruit Feather microcontroller and a 2,000 mAh lithium-polymer battery tucked inside the orb. The Feather’s onboard hardware made managing the lithium cell a cinch, and there were no more long cables to worry about.

The result? A neat costume prop that looks fantastic. A bit of 3D printing and basic electronics is all you need these days to build fun glowing projects, and we always love to see them. Halloween is right around the corner — if you’re building something awesome for your costume, don’t hesitate to let us know!

FLOSS Weekly Episode 803: Unconferencing With OggCamp

This week Jonathan Bennett and and Simon Phipps chat with Gary Williams about OggCamp! It’s the Free Software and Free culture unconference happening soon in Manchester! What exactly is an unconference? How long has OggCamp been around, and what should you expect to see there? Listen to find out!

Continue reading “FLOSS Weekly Episode 803: Unconferencing With OggCamp”

Retrotechtacular: Another Thing Your TV No Longer Needs

As Hackaday writers we don’t always know what our colleagues are working on until publication time, so we all look forward to seeing what other writers come up with. This week it was [Al Williams] with “Things Your TV No Longer Needs“, a range of gadgets from the analogue TV era, now consigned to the history books. On the bench here is a device that might have joined them, so in taking a look at it now it’s by way of an addendum to Al’s piece.

When VHF Was Not Enough

In a Dutch second-had store while on my hacker camp travels this summer, I noticed a small grey box. It was mine for the princely sum of five euros, because while I’d never seen one before I was able to guess exactly what it was. The “Super 2” weighing down my backpack was a UHF converter, a set-top box from before set-top boxes, and dating from the moment around five or six decades ago when that country expanded its TV broadcast network to include the UHF bands. If your TV was VHF it couldn’t receive the new channels, and this box was the answer to connecting your UHF antenna to that old TV.

It’s a relatively small plastic case about the size of a chunky paperback book, on the front of which is a tuning knob and scale in channels and MHz, on the top of which are a couple of buttons for VHF and UHF, and on the back are a set of balanced connectors for antennas and TV set. It’s mains powered, so there’s a mains lead with an older version of the ubiquitous European mains plug. Surprisingly it comes open with a couple of large coin screws on the underside, so it’s time to take a look inside. Continue reading “Retrotechtacular: Another Thing Your TV No Longer Needs”

Drive For Show, Putt For Dough

Any golfer will attest that the most impressive looking part of the game—long drives—isn’t where the game is won. To really lower one’s handicap the most important skills to develop are in the short game, especially putting. Even a two-inch putt to close out a hole counts the same as the longest drive, so these skills are not only difficult to master but incredibly valuable. To shortcut some of the skill development, though, [Sparks and Code] broke most rules around the design of golf clubs to construct this robotic putter.

The putter’s goal is to help the golfer with some of the finesse required to master the short game. It can vary its striking force by using an electromagnet to lift the club face a certain amount, depending on the distance needed to sink a putt. Two servos lift the electromagnet and club, then when the appropriate height is reached the electromagnet turns off and the club swings down to strike the ball. The two servos can also oppose each other’s direction to help aim the ball as well, allowing the club to strike at an angle rather than straight on. The club also has built-in rangefinding and a computer vision system so it can identify the hole automatically and determine exactly how it should hit the ball. The only thing the user needs to do is press a button on the shaft of the club.

Even the most famous golfers will have problems putting from time to time so, if you’re willing to skirt the rules a bit, the club might be useful to have around. If not, it’s at least a fun project to show off on the golf course to build one’s credibility around other robotics enthusiasts who also happen to be golfers. If you’re looking for something to be more of a coach or aide rather than an outright cheat, though, this golf club helps analyze and perfect your swing instead of doing everything for you.

Continue reading “Drive For Show, Putt For Dough”