Thanks, Tamiya-san

We’re saddened to report the passing of Shunsaku Tamiya, the man behind the Tamiya line of models. What was surprising about this, though, is how many of our readers and writers alike felt touched by the Tamiya model company. I mean, they made great models, and they’re definitely a quality outfit, but the outpouring of fond memories across a broad spectrum was striking.

For example, we originally ran the story as breaking news, but our art director Joe Kim spent a good part of his childhood putting together Tamiya kits, and felt like he absolutely had to do a portrait of Mr. Tamiya to pay his respects. I presume Joe is more on the painting-the-models end of the spectrum of Tamiya customers, given his artistic bent. Jenny’s writeup is absolutely touching, and her fond remembrances of the kits shines through her writing.

Myself, I’m on the making-small-robots end of the spectrum, and was equally well served. Back in the early ’90s, the “twin motor gearbox” was a moderately challenging and tremendously rewarding build for me, but it was also the only variable-ratio small motor gearbox that we had easy access to for making small bots to run around the living room.

Indeed, the Tamiya line included a whole series of educational models and components that were just perfect for the budding robot builder. I’m sure I have a set of their tank treads or a slip clutch in a box somewhere, even today.

It’s nice to think of how many people’s lives were touched by their kits, and to get even a small glimpse of that, you just need to read our comment section. We hope the company holds on to Mr. Tamiya’s love for quality kits that inspire future generations, whether they end up becoming artists, engineers, or simply hackers.

ATTiny85 as fan controller

An ATTiny GPU Fan Controller That Sticks

When your GPU fan goes rogue with an unholy screech, you either shell out for a new one or you go full hacker mode. Well, [ashafq] did the latter. The result is a delightfully nerdy fan controller powered by an ATTiny85 and governed by a DS18B20 temperature sensor. We all know a silent workstation is golden, and there’s no fun in throwing money at an off-the-shelf solution. [ashafq]’s custom build transforms a whiny Radeon RX 550 into a cool, quiet operator. Best of all: it’s built from bits likely already in your junk drawer.

To challenge himself a bit, [ashafq] rolled his own temperature-triggered PWM logic using 1-wire protocol on an ATtiny85, all without libraries or bloated firmware. The fan’s speed only ramps up when the GPU gets toasty, just like it should. It’s efficient and clever, and that makes it a fine hack. The entire system runs off a scavenged 12V fan. He could have used a 3D printer, but decided to stick onto the card with double-sided tape. McGyver would approve.

The results don’t lie: idle temps at 40 °C, load peaking at 60 °C. Quieter than stock, smarter than stock, and way cheaper too. The double-sided tape may not last, but that leaves room for improvement. In case you want to start on it yourself, read the full write-up and feel inspired to build your own. Hackaday.io is ready for the documentation of your take on it.

Modifying fans is a tradition around here. Does it always take a processor? Nope.

Custom Bedroom Lighting Controlled By Alexa

[Arkandas] had a problem. They liked reading in bed, but their bedroom lamps weren’t cutting it—either too bright and direct, or too dim and diffuse. The solution was custom lighting, and a new project began.

The concept was simple—build a custom controller for a set of addressable LED lighting strips that would be installed in the bedroom. Specifically, in the headboard of the bed, providing controllable light directly where it was needed. The strips themselves were installed in aluminum channel with plastic diffusers to give a nice smooth light. [Arkandas] then tasked an ESP32 to control the strips, using the FastLED library to work with WS2812B LEDs, and also the Adafruit NeoPixel library for using SK6812 LEDs and their extra white channel. The ESP32 was set up to provide a web interface for direct control over the local network. [Arkandas] also made good use of the FauxmoESP library to enable the device to be controlled via Amazon Alexa, which fit nicely into their existing smarthome setup. Files are on Github for the curious.

The final build works well, creating a soft light in the habitable area of the bed that can also be readily controlled via voice commands or via web. We’ve seen the ESP32 do other great feats in this arena before, too, albeit of the more colorful variety. Meanwhile, if you’re cooking up your own smart lighting solutions, don’t hesitate to tell the tipsline!