Radio Apocalypse: America’s Doomsday Rocket Radios

Even in the early days of the Cold War, it quickly became apparent that simply having hundreds or even thousands of nuclear weapons would never be a sufficient deterrent to atomic attack. For nuclear weapons to be anything other than expensive ornaments, they have to be part of an engineered system that guarantees that they’ll work when they’re called upon to do so, and only then. And more importantly, your adversaries need to know that you’ve made every effort to make sure they go boom, and that they can’t interfere with that process.

In practical terms, nuclear deterrence is all about redundancy. There can be no single point of failure anywhere along the nuclear chain of command, and every system has to have a backup with multiple backups. That’s true inside every component of the system, from the warheads that form the sharp point of the spear to the systems that control and command those weapons, and especially in the systems that relay the orders that will send the missiles and bombers on their way.

When the fateful decision to push the button is made, Cold War planners had to ensure that the message got through. Even though they had a continent-wide system of radios and telephone lines that stitched together every missile launch facility and bomber base at their disposal, planners knew how fragile all that infrastructure could be, especially during a nuclear exchange. When the message absolutely, positively has to get through, you need a way to get above all that destruction, and so they came up with the Emergency Rocket Communication System, or ERCS.

Continue reading “Radio Apocalypse: America’s Doomsday Rocket Radios”

Dead Bug Timer Relay Needs No PCB

We often marvel at the many things a 555 can do. But [Zafer Yildiz] shows us that it can even take the place of a PCB. You’ll see what we mean in the video below. The timer relay circuit is built “dead bug” style with the 555 leads bent out to provide wiring terminals.

Honestly, these kinds of circuits are fun, but we would be reticent to use this type of construction for anything that had to survive in the real world. Solder joints aren’t known for being mechanically stable, so this is good for experiments, but maybe not something you want to do all the time.

Continue reading “Dead Bug Timer Relay Needs No PCB”

telescope mount

DIY Telescope Mount For Stellar Tracking

Pointing at stars may seem easy on the surface—just mount a telescope to a tripod and you’re done, right? As anyone who’s spent time with a telescope can tell you, it’s not that simple, given that the Earth is always spinning. [Sven] set out to make his own mount to compensate for the rotation of the Earth, which led to some pretty amazing results.

In this project, [Sven] designed a GoTo mount, which is a telescope equatorial mount capable of being pointed at specific parts of the sky and tracking them to allow for long-exposure photos with minimal blur due to the Earth’s movement. He first went down the path of finding the correct harmonic gearbox for the steppers used. A harmonic drive system would allow smooth, precise movement without backlash, and the 100:1 stepdown would provide for the slightest of adjustments.

The steppers are controlled by a custom PCB [Sven] designed around an ESP32-S3. The first PCB had a mistake in the power delivery circuit. After a small tweak, V2 boards arrived and work great. The PCB runs OnStepX, a great open-source project centered around pointing telescopes, cutting down a lot of the software workload on this project.

After all the work put in, you may be wondering how well it works. [Sven] was able to get a pointing accuracy of 1-2 arcseconds from his mount. To get an idea of how great that is, 1 arcsecond is about the same as pointing at a penny from 4 km (2.5 miles) away. Fantastic results, [Sven], and thank you for sending in this great project—be sure to head over to his site and read all the details of this impressive build. If you found this interesting, be sure to check out some of our other telescope-related projects.