NEC V20: The Original PC Processor Upgrade

In the early 1980s, there was the IBM PC, with its 4.77 MHz Intel 8088 processor. It was an unexpected hit for the company, and within a few years there were a host of competitors. Every self-respecting technology corporation wanted a piece of the action including processor manufacturers, and among those was NEC with their V20 chip and its V30 sibling. From the outside they were faster pin-compatible 8088 and 8086 clones, but internally they could also run both 8080 and 80186 code. [The Silicon Underground] has a look back at the V20, with some technical details, history, and its place as a PC upgrade.

For such a capable part it’s always been a surprise here that it didn’t take the world by storm, and the article sheds some light on this in the form of an Intel lawsuit that denied it a critical early market access. By the time it was available in quantity the PC world had moved on from the 8088, so we saw it in relatively few machines. It was a popular upgrade for those in the know back in the day though as it remains in 2025, and aside from its immediate speed boost there are a few tricks it lends to a classic PC clone. The version of DOS that underpinned Windows 95 won’t run on an 8086 or 8088 because it contains 8016 instructions, but a V20 can run it resulting in a much faster DOS experience. One to remember, if an early PC or clone cones your way.

Hungry for the good old days of DOS? You don’t need to find 80s hardware for that.

Bluetooth Earrings Pump Out The Tunes

When you think of a Bluetooth speaker, you’re probably picturing a roughly lunchbox-sized device that pumps out some decent volume for annoying fellow beachgoers, hikers, or public transport users. [Matt Frequencies] has developed something in an altogether different form factor—tiny Bluetooth speakers you can dangle from your earlobes! They’re called Earrays, and they’re awesome.

The build started with [Matt] harvesting circuit boards from a pair of off-the-shelf Bluetooth earbuds. These are tiny, and perfect for picking up a digital audio stream from a smartphone or other device, but they don’t have the grunt to drive powerful speakers. Thus, [Matt] hooked them up to a small Adafruit PAM8302A amplifier board, enabling them to drive some larger speaker drivers that you can actually hear from a distance. These were then installed in little 3D printed housings that are like a tiny version of the speaker arrays you might see hanging from the rigging at a major dance festival. Throw on a little earring hook, and you’ve got a pair of wearable Bluetooth speakers that are both functional, fashionable, and very audible!

[Matt] has continued to develop the project, even designing a matching pendant and a charging base to make them practical to use beyond a proof-of concept. Despite the weight of the included electronics, they’re perfectly wearable, as demonstrated by [DJ Kaizo Trap] modelling the hardware in the images seen here.

We’ve seen plenty of great LED earrings over the years, but very few jewelry projects in the audio space thus far. Perhaps that will change in future—if you pursue such goals, let us know!

Whither The Chip Shortage?

Do you remember the global chip shortage? Somehow it seems so long ago, but it’s not even really been three years yet. Somehow, I had entirely forgotten about it, until two random mentions about it popped up in short succession, and brought it all flooding back like a repressed bad dream.

Playing the role of the ghost-of-chip-shortage-past was a module for a pair of FPV goggles. There are three versions of the firmware available for download at the manufacturer’s website, and I had to figure out which I needed. I knew it wasn’t V1, because that was the buggy receiver PCB that I had just ordered the replacement for. So it was V2 or V3, but which?

Digging into it, V2 was the version that fixed the bug, and V3 was the redesign around a different microcontroller chip, because they couldn’t get the V2 one during the chip shortage.

I saw visions of desperate hackers learning new toolchains, searching for alternative parts, finding that they could get that one chip, but that there were only 20 of them left and they were selling for $30 instead of $1.30. I know a lot of you out there were designing through these tough couple years, and you’ve all probably got war stories.

And yet here we are, definitively post-chip-shortage. How can you be sure? A $30 vape pen includes a processor that we would have killed for just three years ago. The vape includes a touchscreen, just because. And it even has a Bluetooth LE chip that it’s not even using. My guess is that the hardware designers just put it in there hoping that the firmware team would get around to using it for something.

This vape has 16 MB of external SPI Flash! During the chip shortage, we couldn’t even get 4 MB SPI flash.

It’s nice to be on the other side of the chip shortage. Just order whatever parts you want and you get them, but don’t take for granted how luxurious that feels. Breathe easy, and design confidently. You can finally use that last genuine STM32F103 blue pill board without fear of it being the last one on earth.

(Featured image is not an actual photo of the author, although he does sometimes have that energy.)

Bringing Bluetooth To The Zune

The Zune might have joined the portable media player game too late to ever really be competition for the iPod, but that doesn’t mean it didn’t pick up some devoted fans along the way. Some of them are still breathing new life into the device, such as [The Director of Legal Evil Emeritus] at the Louisville Hackerspace, with this project that gives it Bluetooth capability.

As far as media players go, there’s still some solid reasons to rock a Zune. Compared to other devices of the era, it offers a better DAC, an FM tuner, and no iTunes reliance. The goal of this project was to bring a bit of modern functionality without having to do any modification of the Zune itself. As the player supported docks with IR remotes, this build involves using an ESP32 to listen to the Bluetooth signal coming from the speakers, interpret any button presses, and forward them along to the Zune’s dock.

There is a dedicated scene for these old music players, but this build is unique for not needing to crack open the case and splice in a Bluetooth module. Even then, those typically don’t have the ability to interact with things like this speaker with its integrated control buttons.

We don’t often seen Zune hacks come our way — the last time Microsoft’s player graced these pages was in 2010, when the Open Zune Development Kit was released.

Thanks to [JAC_101] for the tip!

An LED Sphere For Your Desk

The Las Vegas Sphere is great and all, but few of us can afford the expense to travel to out there to see it on the regular. If you’re looking for similar vibes you can access at home, you might enjoy the desk toy that [AGBarber] has designed.

The scale is small — the sphere measures just 98 mm (3.6 inches) in diameter — but that just means it’s accessible enough to be fun. The build is based around various sizes of WS2812B addressable LED rings, and contains 120 individual RGB LEDs in total. They’re wrapped up in a 3D printed housing which does a great job of diffusing the light. Transparent filament was used to print parts that light up with a richly-saturated glow with few visible hotspots. Commanding the LEDs is an ESP8266 microcontroller in the form of a Wemos D1 Mini, which provides plenty of grunt to run animations as well as great wireless connectivity options. [AGBarber] relied on their own Pixel Spork library to handle all the cool lighting effects. Files are on GitHub for the curious.

Maybe you don’t like spheres, and icosahedrons are more your speed. Well, we’ve featured those too—with 2,400 LEDs, no less.

Continue reading “An LED Sphere For Your Desk”