How Do The Normal People Survive?

It was one of those weeks last week at Hackaday’s home office. My mother-in-law handed me her favorite power bank and said “it’s not charging”. She had every expectation that I’ll open it up, desolder the weary pouch inside, scrounge a LiPo out of some corner of the basement, and have it back up and running before the weekend. And of course that’s what happened, although maybe it looks a little worse for wear because it was hard to open the sealed case without excessive force. Sorry about that!

Then on the weekend, I finally got fed up with the decomposing foam on the face seal on my FPV goggles. It was leaking light all over the place. Of course I could have bought a new seal, but then I’d have to wait a week or so for delivery. So I pulled the velcro backing off, tossed it in the bed scanner, pulled the image up in Inkscape, converted it to Gcode, and cut out a couple seals out of EVA foam on the laser. Not only are they essentially indestructible, but I was able to customize them a little bit, and the fit is now better than ever.

And then, one of our neighbors bought a new garage door fob, flipped the DIP switches into the right configuration, and couldn’t figure out why it wouldn’t open the garage door. Knock knock knock. Using the tried-and-true RF probe that everyone with a scope probe has sitting around, namely hooking the ground pin to the tip and putting the radio device in the loop, it was clear that the sense of the DIP switches was inverted from what it said in the instructions. That was a fun little puzzle.

It was the garage door opener that triggered me to think about how normal people would handle any of these situations. “How do the normies even get by?” were the exact words that went through my head. And let’s face it: we’re not entirely normal. Normal people don’t have a soldering setup just sitting around ready to get hot 24/7, or a scope to diagnose a garage door RF transmitter at the drop of a hat. But these things seem to happen to me all the time. How do the normal people survive? Maybe they all know someone with a scope?

I take it as my service to the world to be “that guy” for most of our friends and family, and I pretty much do it without complaint. “With great power” and all that. My wife is just about as gracious when she’s stuck debugging a parent’s Windows setup, so I’m not saying I’m the only saint in the world, either. Surely you have similar stories.

But last week it made me reflect on how good we’ve got it, and that does make me want to pay it forward a little bit. If you’re one of the people who can, try to help out those who can’t.

A High Resolution DAC From Scratch

It’s a well-known conundrum that while most computers these days are digital in nature, almost nothing in nature is. Most things we encounter in the real world, whether it’s temperature, time, sound, pressure, or any other measurable phenomenon comes to us in analog form. To convert these signals to something understandable by a digital converter we need an analog-to-digital converter or ADC, and [Igor] has built a unique one from scratch called a delta sigma converter.

What separates delta sigma converters apart is their high sampling rate combined with a clever way of averaging the measurements to get a very precise final value. In [Igor]’s version this average is provided by an op-amp that integrates the input signal and a feedback signal, allowing for an extremely precise digital value to be outputted at the end of the conversion process. [Igor] has built this one from scratch as well, and is using it to interface a magnetic rotary encoder to control digital audio playback.

Although he has this set up with specific hardware, he has enough detail in his video (including timing diagrams and explanations of all of the theory behind these circuits) for anyone else to build one of these for other means, and it should be easily adaptable for plenty of uses. There are plenty of different ADC topologies too, and we saw many different ones a few years ago during our op-amp challenge.

Continue reading “A High Resolution DAC From Scratch”

How Your SID May Not Be As Tuneful As You’d Like

The MOS Technologies 6581, or SID, is perhaps the integrated circuit whose sound is most sought-after in the chiptune world. Its three voices and mix of waveforms define so much of our collective memories of 1980s computing culture, so it’s no surprise that modern musicians seek out SID synthesisers of their own. One of these is the MIDISID, produced by [MIDI IN],  and in a recent video she investigates an unexpected tuning problem.

It started when she received customer reports of SIDs that were out of tune, and in the video she delves deeply into the subject. The original SID gained its timing from a clock signal provided by the Commodore 64, with thus different timing between NTSC and PAL versions of the machine. This meant European SID music needed different software values to American compositions, and along the way she reveals a localisation error in that the British Commodore 64 manual had the wrong table of values.

Modern SIDs are emulated unless you happen to have an original, and her problem came when switching from one emulated SID to another. The first one used that clock pin while the second has its own clock, resulting in some music being off-tune. It’s a straightforward firmware fix for her, but an interesting dive into how these chips worked for the rest of us.

Continue reading “How Your SID May Not Be As Tuneful As You’d Like”