Velomobile Gets Electric Assist

What do you get when you throw all accepted bicycle designs out the window and start fresh? Well, it might look a bit like [Saukki’s] velomobile.

Most bikes come in a fairly standard, instantly-recognizable shape which has been popular for over a century now. While it’s a vast improvement over its predecessor, the penny-farthing bicycle, there’s no reason that a bike needs to have this two-triangle frame shape other than that a pretentious bicycle racing standards group says they have to. If you want to throw their completely arbitrary rulebook out of the window, though, you can build much more efficient, faster bikes like recumbents or even full-fairing velomobiles. And if you want to go even faster than that, you can always add a standard ebike motor kit to one.

This is a lot harder than putting a motor on a normal bicycle. Bicycles tend to have standardized parts and sizes, and [Saukki]’s velomobile is far from the standard bike. First, he needed custom mounts for the display and also for the battery, which he needed to make extra wide so its weight wouldn’t rip through the carbon fiber body. The emergency brake lever motor cutoff needed to be dismantled to work with his control system too, and finally the mid-drive motor needed a custom mount as well. It’s a TSDZ2 motor that comes with torque-sensing pedal assist.

The changes didn’t stop there. The velomobile max speed is much higher than a standard bike. This called for some gear ratio changes, in the form of a monster 60-tooth chain ring.

This leads to the one major problem with this build which is that the velomobile can achieve such high speeds on its own that the electric assist cuts out for most of the ride. There is a legal requirement over much of Europe that e-bikes only have pedal assist (without a throttle) and that they stop assisting above a specific speed. But if you want to build an e-bike that pushes the boundary of the law instead of strictly adhering to it, take a look at this one which uses a motor from a washing machine.

Continue reading “Velomobile Gets Electric Assist”

Direction-Finding With Help From The Steam Deck

Direction-finding, or fox hunting, is a popular activity in ham radio circles where a group of people armed with radios attempt to locate a broadcasting source. Besides being a hobby for amateurs, it’s also a necessary tool in the belt of regulators who are attempting to track down violators of the air space. There are a lot of ways to figure out the precise location of a radio transmission, but this one manages to pull it off using both a boat and a Steam Deck, each armed with a software-defined radio.

This project comes to us from [Aaron] who is well known in the amateur radio circles for his SDR-focused Linux distribution called DragonOS; which has all the tools needed for a quality SDR experience, in this case KrakenSDR and DF Aggregator. He’s loaded everything up on a Steam Deck and left that in a secure location on the shore of a lake, while he carries second device with the same software with him on a boat. With the two devices listening for a specific signal, he’s able to quickly zero in on his friend on the shore who is broadcasting on the 70 cm band thanks to the help of all of these software packages.

While ham radio isn’t always known for being a youthful and exciting activity, the advent of software-defined radio and other digital modes seem to be shaking things up in that world. Certainly speeding around a lake on a boat is fun on its own as well, and a fox hunt like this can be done with something as small and simple as a Raspberry Pi too.

Continue reading “Direction-Finding With Help From The Steam Deck”

A 3D Printer With Quadruple The Output

While the polygraph is colloquially associated with pseudoscientific lie detector tests, the actual invention of the first polygraph was designed to mechanically duplicate the pen strokes of someone writing. Famously, a polygraph was used by former US President Thomas Jefferson in his “modern office”, a replica of which still sits in the Smithsonian museum. Few of us have a need for a pen-based polygraph anymore, but inspiration from the centuries-old invention can still be gleaned from the machine, like in this 3D printer which can output four identical prints at once.

The printer is a Core XY design with four separate print heads, which are all locked together. The printer behaves as if there is a single print head which keeps it simpler than it otherwise could be. Some extra consideration needs to be paid to the print bed to ensure it’s level and flat, and it also includes a unique Z-axis designed to prevent Z-banding from poor quality leadscrews. It has a fairly wide print area, but a noticeable restriction is that it’s essentially quartered, so while it can produce many parts at once, it can’t produce a single part that uses the entire area of the print bed.

Every printed part used to make this printer was designed by [Rick] in OpenSCAD. He also built a custom electronics board with the printer drivers, and all other associated circuitry in KiCad. For anyone who prints large volumes of parts, this might be just the trick to increase output without having to manage more printers. If you already have more printers and need an easier way to manage them all, take a look at this dedicated Raspberry Pi set up to do just that.

Continue reading “A 3D Printer With Quadruple The Output”

Researching Factorio…For Science

Science has affirmatively answered a lot of questions that, looking back, could be seen as bizarre to have asked in the first place. Questions like “can this moldy cheese cure disease” or “can this rock perform math if we give it some electricity.”  Among the more recent of this list is the question of whether or not the video game Factorio, in which the player constructs an elaborate factory, can be used as the basis for other academic work. As [Kenneth Reid] discusses in this talk, it most certainly can.

If you haven’t played the game, it’s a sort of real-time strategy (RTS) game where the player gathers materials to construct a factory while defending it from enemies. On the surface it might seem similar to Age of Empires or Starcraft, but its complexity is taken to extremes not found in other RTS games. The complexity hides nuance, and [Kenneth] points out that it’s an excellent simulator to study real-world problems such as vehicle routing problems, decision making, artificial intelligence, bin packing problems, and production planning, among a whole slew of other interesting areas of potential research.

[Kenneth] and his partners on this project also developed some software tools with interacting with a Factorio game without having to actually play it directly. The game includes an API which the team used to develop tools so that other researchers can use it as a basis for simulations and studies. There was a research paper published as well for more in-depth reading on the topic. We shouldn’t be too surprised that a game can be used in incredibly productive ways like this, either. Here’s another example of a toy being used to train engineers working in industrial automation.

Continue reading “Researching Factorio…For Science”

Front Door Keys Hidden In Plain Sight

If there’s one thing about managing a bunch of keys, whether they’re for RSA, SSH, or a car, it’s that large amounts of them can be a hassle. In fact, anything that makes life even a little bit simpler is a concept we often see projects built on to of, and keys are no different. This project, for example, eliminates the need to consciously carry a house key around by hiding it in a piece of jewelry.

This project sprang from [Maxime]’s previous project, which allowed the front door to be unlocked with a smartphone or tablet. This isn’t much better than carrying a key, since the valuable piece of electronics must be toted along in place of one. Instead, this build eschews the smartphone for a ring which can be worn and used to unlock the door with the wave of a hand. The ring contains an RFID which is read by an antenna that’s monitored by a Wemos D1 Mini. When it sees the ring, a set of servos unlocks the door.

The entire device is mounted on the front of the door about where a peephole would normally be, with the mechanical actuators on the inside. It seems just as secure (if not more so) than carrying around a metal key, and we also appreciate the aesthetic of circuit boards shown off in this way, rather than hidden inside an enclosure. It’s an interesting build that reminds us of some other unique ways of unlocking a door.

Continue reading “Front Door Keys Hidden In Plain Sight”

Playdate Handheld Turned Typewriter

The Playdate is an interesting gaming system. It’s a handheld, has a black and white screen, and superficially reminds us a little bit of the original Game Boy, right down to the button layout. But the fact that it has a second controller that pops out of the side, that this controller is a crank, and that the whole system was made by the same people that made Untitled Goose Game, makes us quite intrigued. Apparently it has made an impact on others, too, because this project turns the gaming system into a typewriter.

The Playdate doesn’t have native support for USB accessories unless it’s plugged into this custom 3D printed dock. Inside of the dock is a Teensy 4.1 which handles some translation between the keyboard and the console. Once the dock is taken care of the text editor needs to be side-loaded to the device as well. The word processor has the ability to move the cursor around, insert and delete text, and the project’s creator, [t0mg], plans to add more features in future versions like support for multiple files, changing the font, and a few other things as well.

For anyone interested in recreating this project, all of the printable files, the text editor, and the schematics are all available in the GitHub repo. It’s an impressive project for a less well-known console that we haven’t seen many other hacks for, unless you count this one-off Arduboy project which took some major inspiration from the Playdate’s crank controller.

Ebike Charges In The Sun

Ebikes are slowly taking the place of many cars, especially for short trips. Most ebikes can take riders at least 16 kilometers (10 miles) without too much effort, at a cost that’s often a single-digit percentage of what the same trip would have been with an internal combustion engine. If you’re interested in dropping the costs of your ebike trips even further, or eliminating it entirely, take a look at this small ebike with integrated solar panels.

While any battery can be charged with a sufficiently large array of solar panels and the correct electronics to match the two systems together, this bike has a key that sets it apart from most others: it can charge while it is being used to power the bike. Most ebikes don’t have charging enabled during rides, so if you want to use the sun while riding to extend the range of the bike you’ll need to find one like this. This bike uses two 50 W panels on the two cargo areas of the bike, attached to a 400 W MPPT charge controller. The Lectric XP 2.0 ebike has a motor with a peak rating of 850 W, but in a low pedal-assist mode the solar panels likely output a significant fraction of the energy used by the electric drivetrain.

Even if the panels don’t provide the full amount of energy needed for riding around, the project’s creator [Micah] lives in Florida, so just setting the bike outside in the sun for six to eight hours is enough to replenish most of the battery’s charge. It’s probably not going to win any solar-powered bike races anytime soon, but for an efficient, quick bike to ride around town it’s not too shabby.