Make A Super Cute LiDAR Measurement Module

This ultra-cute tiny LiDAR rangefinder project by [gokux] can be thought of as a love letter to the incredible resources and components hobbyists and hackers of all types have access to nowadays. In fact, it all stemmed from coming across a miniscule half-inch 64×32 OLED display module that was simply too slick to pass up.

USB connector for charging on the bottom, hole for distance sensor out the top.

To use it, one simply powers it on and the display will read out the distance in millimeters. The VL53L0X time-of-flight sensor inside works by sending out a laser pulse and measuring how long it takes for the pulse to bounce back. We hope you’re curious about what such a sensor looks like on the inside, because here’s a nifty teardown of these fantastic devices. The device can technically measure distances of up to 2 m, but [gokux] says accuracy drops off after 1 m.

The main components besides the OLED display and VL53L0X sensor are an ESP32-C3 board (which handily integrates battery charging circuitry), 3D-printed enclosure, tiny rechargeable battery, and power switch. The whole thing is under one cubic inch. Not bad, and it even makes a passable keychain. Parts list, code, and 3D model files, including STEP format, are all available if you’d like to spend an afternoon making your own.

How To Cram 945 LEDs Into A Teeny Tiny Vegas-Style Sphere

[Carl Bugeja] finds the engineering behind the Las Vegas Sphere fascinating, and made a video all about the experience of designing and building a micro-sized desktop version. [Carl]’s version is about the size of a baseball and crams nearly a thousand RGB pixels across the surface.

A four-layer flexible PCB is the key to routing data and power to so many LEDs.

Putting that many addressable LEDs — even tiny 1 mm x 1 mm ones — across a rounded surface isn’t exactly trivial. [Carl]’s favored approach ended up relying on a flexible four-layer PCB and using clever design and math to lay out an unusual panel shape which covers a small 3D printed geodesic dome.

Much easier said that done, by the way. All kinds of things can and do go wrong, from an un-fixable short in the first version to adhesive and durability issues in later prototypes. In the end, however, it’s a success. Powered over USB-C, his mini “sphere” can display a variety of patterns and reactive emojis.

As elegant and impressive as the engineering is in this dense little display, [Carl] has some mixed feelings about the results. 945 individual pixels on such a small object is a lot, but it also ends up being fairly low-resolution in the end. It isn’t very good at displaying sharp lines or borders, so any familiar shapes (like circles or eyes) come out kind of ragged. It’s also expensive. The tiny LEDs may be only about 5 cents each, but when one needs nearly a thousand of them for one prototype that adds up quickly. The whole bill of materials comes out to roughly $250 USD after adding up the components, PCB, controller, and mechanical parts. It’s certainly a wildly different build than its distant cousin, the RGB cube.

Still, it’s an awfully slick little build. [Carl] doubts there’s much value in pursuing the idea further, but there are plenty of great images and clips from the build. Check out the video, embedded below.

Continue reading “How To Cram 945 LEDs Into A Teeny Tiny Vegas-Style Sphere”

Tell Time And Predict The Heavens With This Astronomical Timepiece

Looking for a new project, or just want to admire some serious mechanical intricacy? Check out [illusionmanager]’s Astronomical Clock which not only tells time, but shows the the positions of the planets in our solar system, the times of sunrise and sunset, the phases of the moon, and more — including solar and lunar eclipses.

One might assume that the inside of the Astronomical Clock is stuffed with a considerable number of custom gears, but this is not so. The clock’s workings rely on a series of tabs on movable rings that interact with each other to allow careful positioning of each element. After all, intricate results don’t necessarily require complex gearing. The astrolabe, for example, did its work with only a few moving parts.

The Astronomical Clock’s mechanical elements are driven by a single stepper motor, and the only gear is the one that interfaces the motor shaft to the rest of the device. An ESP32-C3 microcontroller takes care of everything else, and every day it updates the position of each element as well as displaying the correct time on the large dial on the base.

The video below shows the clock in operation. Curious its inner workings? You can see the entire construction process from beginning to end, too.

Continue reading “Tell Time And Predict The Heavens With This Astronomical Timepiece”

The Secret Behind The Motion Of Microsoft’s Bendy Mouse

The Surface Arc is a designed-for-travel mouse that carries flat, but curves into shape for use. It even turns on when it’s bent and shuts itself off when it’s flat. The device isn’t particularly new, but [Mr Teardown] was a bit surprised at the lack of details about what’s inside so tears it down in a video to reveal just how the mechanism works.

The mechanism somewhat resembles a beaver’s tail, and locks into place thanks to a magnetic connector at the base that holds the device’s shape.

The snap-action of the bending is accomplished with the help of a magnetic connection near the bottom end of the mouse’s “tail”, locking it into place when flexed. Interestingly, the on and off functionality does not involve magnets at all. Power control is accomplished by a little tab that physically actuates a microswitch.

There are a few interesting design bits that we weren’t expecting. For example, there is no mechanical scroll wheel. The mouse delivers similar functionality with touch sensors and a haptic feedback motor to simulate the feel and operation of a mechanical scroll wheel.

[Mr Teardown] finds the design elegant and effective, but we can’t help but notice it also seems perhaps not as optimized as it could be. There are over 70 components in all, including 23 screws (eight different kinds!), and it took [Mr Teardown] the better part of 45 minutes to re-assemble it. You can watch the entire teardown in the video embedded just under the page break; it’s a neat piece of hardware for sure.

If you’re in the mood for another mouse teardown, we have a treat for you: an ancient optical mouse from the 80s that required a special surface to work.

[via Core77]

Continue reading “The Secret Behind The Motion Of Microsoft’s Bendy Mouse”

Everything You Ever Wanted To Know About The ULN2003

The ULN2003 IC is an extremely versatile part, and with the help of [Hulk]’s deep dive, you might just get some new ideas about how to use this part in your own projects.

Each of the seven outputs works like this simplified diagram.

Inside the ULN2003 you’ll find seven high-voltage and high-current NPN Darlington pairs capable of switching inductive loads. But like most such devices there are a variety of roles it can fill. The part can be used to drive relays or motors (either brushed or stepper), it can drive LED lighting, or simply act as a signal buffer. [Hulk] provides some great examples, so be sure to check it out if you’re curious.

Each of the Darlington pairs (which act as single NPN transistors) is configured as open collector, and the usual way this is used is to switch some kind of load to ground. Since the inputs can be driven directly from 5 V digital logic, this part allows something like a microcontroller to drive a high current (or high voltage, or both) device it wouldn’t normally be able to interface with.

While the circuitry to implement each of the transistor arrays isn’t particularly complex and can be easily built by hand, a part like this is a real space saver due to how it packs everything needed in a handy package. Each output can handle 500 mA, but this can be increased by connecting in parallel.

There’s a video (embedded below) which steps through everything you’d like to know about the ULN2003. Should you find yourself wanting a much, much closer look at the inner secrets of this chip, how about a gander at the decapped die?

Continue reading “Everything You Ever Wanted To Know About The ULN2003”

How To Find Replacement Parts When Model Numbers Don’t Match

[Sharad Shankar] repaired a broken TV by swapping out the cracked and malfunctioning image panel for a new one. Now, part-swapping is a great way to repair highly integrated modern electronics like televisions, but the real value here is something else. He documented his fix but the real useful part is his observations and guidance on how to effectively look for donor devices when the actual model of donor device can’t be found.

The usual approach to fixing a device by part swapping is to get one’s hands on two exact same models that are broken in different ways. But when it comes to consumer electronics with high turnovers — like televisions — it can be very difficult to actually locate any particular model once it’s no longer on shelves. [Sharad Shankar]’s broken TV was a 65″ TCL R646 purchased in 2021, and searching for a second 65″ TCL R646 was frankly like looking for a needle in a haystack. That’s when he got a visit from the good ideas fairy. Continue reading “How To Find Replacement Parts When Model Numbers Don’t Match”

Quad-Motor Electric Kart Gets A Little Too Thrilling

[Peter Holderith] has been on a mission to unlock the full potential of a DIY quad-motor electric go-kart as a platform. This isn’t his first rodeo, either. His earlier vehicle designs were great educational fun, but were limited to about a kilowatt of power. His current platform is in theory capable of about twenty. The last big change he made was adding considerably more battery power, so that the under-used motors could stretch their legs a little, figuratively speaking.

How did that go? [Peter] puts it like this: “the result of [that] extra power, combined with other design flaws, is terror.” Don’t worry, no one’s been hurt or anything, but the kart did break in a few ways that highlighted some problems.

The keyed stainless steel bracket didn’t stay keyed for long.

One purpose of incremental prototyping is to bring problems to the surface, and it certainly did that. A number of design decisions that were fine on smaller karts showed themselves to be inadequate once the motors had more power.

For one thing, the increased torque meant the motors twisted themselves free from their mountings. The throttle revealed itself to be twitchy with a poor response, and steering didn’t feel very good. The steering got heavier as speed increased, but it also wanted to jerk all over the place. These are profoundly unwelcome feelings when driving a small and powerful vehicle that lurches into motion as soon as the accelerator is pressed.

Overall, one could say the experience populated the proverbial to-do list quite well. The earlier incarnation of [Peter]’s kart was a thrilling ride, but the challenge of maintaining adequate control over a moving platform serves as a reminder that design decisions that do the job under one circumstance might need revisiting in others.