Firefox Reality, A Browser For VR Devices

The browser you are reading this page in will be an exceptionally powerful piece of software, with features and APIs undreamed of by the developers of its early-1990s ancestors such as NCSA Mosaic. For all that though, it will very probably be visually a descendant of those early browsers, a window for displaying two-dimensional web pages.

Some of this may be about to change, as in recognition of the place virtual reality devices are making for themselves, Mozilla have released Firefox Reality, in their words “a new web browser designed from the ground up for stand-alone virtual and augmented reality headset“. For now it will run on Daydream and GearVR devices as a developer preview, but the intended target for the software is a future generation of hardware that has yet to be released.

Readers with long memories may remember some of the hype surrounding VR in browsers back in the 1990s, when crystal-ball-gazers who’d read about VRML would hail it as the Next Big Thing without pausing to think about whether the devices to back it up were on the market. It could be that this time the hardware will match the expectation, and maybe one day you’ll be walking around the Hackaday WrencherSpace rather than reading this in a browser. See you there!

They’ve released a video preview that disappointingly consists of a 2D browser window in a VR environment. But it’s a start.

Continue reading “Firefox Reality, A Browser For VR Devices”

Upgrade Your Mac With A Touchscreen, For Only A Dollar

Imagine how hard it could be to add a touch screen to a Mac laptop. You’re thinking expensive and difficult, right? How could [Anish] and his friends possibly manage to upgrade their Mac with a touchscreen for only a dollar? That just doesn’t seem possible.

The trick, of course, is software. By mounting a small mirror over the machine’s webcam, using stiff card, hot glue, and a door hinge. By looking at the screen and deciding whether the image of a finger is touching its on-screen reflection, a remarkably simple touch screen can be created, and the promise of it only costing a dollar becomes a reality. We have to salute them for coming up with such an elegant solution.

They have a video which we’ve put below the break, showing a few simple applications for their interface. Certainly a lot less bother than a more traditional conversion.

Continue reading “Upgrade Your Mac With A Touchscreen, For Only A Dollar”

Is This The End For The C.H.I.P.?

There have been so many launches of very capable little single-board computers, that it is easy to forget an individual one among the crowd. You probably remember the C.H.I.P though, for its audacious claim back in 2015 to be the first $9 computer. It ran Linux, and included wireless connectivity, composite video output, and support for battery power. As is so often the case with ambitious startups, progress from the C.H.I.P’s creator Next Thing Co came in fits and starts.

In recent months there has been something of a silence, and now members of the community have discovered evidence that Next Thing CO are the subject of a Notice of General Assignment from Insolvency Services Group. This is followed up by the discovery that their office is available for rent.

A process called Assignment to the Benefit of Creditors is an alternative to bankruptcy proceedings yet still signals the end of a company as the service liquidates remaining assets. Despite the website and forum remaining online it appears that we may have seen the end of the C.H.I.P. and its stablemates. Hackaday has reached out to Next Thing Co for comment and will update this article if we hear back.

At the time it was launched, the C.H.I.P. was a pretty impressive product, and though it has since been eclipsed by products like the Raspberry Pi Zero, the board remains a useful item. The addition of the PocketCHIP all-in-one keyboard and display peripheral made it an instantly recognizable device, and it and its more powerful companion C.H.I.P. Pro module found their way into quite a few projects. For us the most impressive C.H.I.P. project is a retrocomputer, this miniature Apple II complete with monitor. If this really is the end for this particular little board, we’ll be sorry to see it go.

Thanks [smerrett79] for the tip.

Header image: Kiwamu Okabe [CC BY-SA 2.0].

Hackaday X Tindie Meetup In Dublin This Friday

Hackaday and Tindie are coming to Dublin at the end of this week. Join us on Friday night as we host a meetup in the company of our friends at TOG hackerspace. Please RSVP to tell us you’re coming.

This is a Bring-a-Hack style event, so come out for a casual meetup and bring a project to show off. It’s a great way to get conversation started and often the most amazing projects are the ones whose creators imagine them to be inconsequential. Keep them to a manageable size though, space may be at a premium.

We’ll supply beverages and light snacks to oil the wheels, and Hackaday Editors [Mike Szczys] and [Jenny List], Tindie Product Manager [Jasmie Brackett], and SupplyFrame Product Manager [Sophi Kravitz] will be on hand. It doesn’t matter what it is you’ve got to show us, whatever you have we’d love to see it. Thank you to TOG for opening their doors to this event!

Saturday is the Hackaday Dublin Unconference!

Act fast to grab one of the last five tickets to the Hackaday Dublin Unconference this Saturday. All tickets have been sold out, but a few people who had a ticket but are now unable to attend were nice enough to return them so that someone else may take their place. Everyone one who attends should be ready to give a 7-minute talk on what they’re excited about right now. We can’t get through everyone in one day so don’t worry if public speaking mortifies you (but still come prepared). We’ll do our best to get through a ton of presenters. We’ll have food and drink on hand and head to the pub afterward for those still standing that evening! Need proof that this is not to be missed? We did it in London last September and it was epic!

This is Hackaday’s first visit en masse to the Irish capital, and we’re looking forward to correcting that oversight and meeting the masses of our Irish readership. Thanks to the generous support of DesignSpark, the innovation arm of RS Components and the exclusive sponsor of the event, we hare happy to offer Hackaday Dublin Unconference free of charge to all who attend.

We’re excited about what will come from this weekend and are looking forward to it. See you soon!

Multi-Coloured LEDs Make For A Beautiful Colour Clock

This project is so pretty, it doesn't need a case!
This project is so pretty in its own right, it doesn’t need a case!

Clocks are a recurring feature among the projects we feature here on Hackaday, with several common themes emerging among them. We see traditional clocks with hands, digital clocks with all forms of display including the ubiquitous Nixie tube, and plenty of LED ring clocks. [Matt Evans]’s build is one of the final category, a particularly nice LED ring clock using wire-ended multi-colour LEDs. Other clocks produce an effect that looks good from across the room, but this one is also a work of beauty when examined in close-up.

Behind it all are four interlocking semicircular PCBs, an STM32F051C6T6 ARM Cortex M0 microcontroller which controls the clock, and a brace of driver chips. The different “hands” of the clock are expressed as different LED colours, and there is a variety of different colour and clock “hand” effects. An acrylic ring completes the effect, by covering the LEDs themselves. He’s put together a video of the clock in action, which you can see below the break.

Continue reading “Multi-Coloured LEDs Make For A Beautiful Colour Clock”

Incandescent Luminescence Of Semiconductor Junctions Characterised In The Lab

The semiconductor devices were put to the test under different atmospheres in this chamber.
The semiconductor devices were put to the test under different atmospheres in this chamber.

One of the humbling things about writing for Hackaday comes when we encounter our readership and learn the breadth of our community and the huge variety of skills and professions you represent. Among your number are a significant representation among scientists, and as a result we often receive fascinating previews of and insights into their work. Sometimes they deserve a little bit more attention than one of our normal short daily pieces, and such a moment has come our way this week.

We’ve been fortunate enough to have an early look at a paper which makes detailed observations of a hitherto barely characterised property of semiconductor junctions that might have some interest for Hackaday readers in their work. In their paper, [Mellie], [Bacon] et al at Fulchester University in northeast England take a look at incandescent luminescence, a fleeting and curious effect exhibited by all semiconductor junctions in which they emit short-duration high-intensity infra-red and visible light with an extremely fast rise time when presented with high levels of current. This is a property which has been rarely exploited in commercial devices due to the large current densities required to reproduce it.

Incandescent Luminescence Explained

If you’ve never heard of incandescent luminescence before then you’re in good company, for neither had we until it was explained to us. It appears that there are a set of higher energy state conductivity bands in a semiconductor junction that can only be reached once the current passing through it breaches a threshold governed by the available quantum plasma dipole moment of the semiconductor material in question. At this point the junction assumes a plasma condition resulting in the abrupt emission of infra-red and visible radiation, the incandescent luminescence phase has been triggered.

A near-infra-red spectrum of incandescent luminescence in a halogen-doped silicon semiconductor junction.
A near-infra-red spectrum of incandescent luminescence in a silicon semiconductor junction.

Though it has been known to science since first being observed in the early 20th century by the earliest experimenters in the field of semiconductor junctions, the transitory nature of the phenomenon has traditionally been a barrier to its proper examination. The British team took a selection of commercial semiconductor devices very similar to the types that might be used by Hackaday readers, placed them in a chamber, and used an array of photoelectric sensors coupled with ionising detectors using americium-241 alpha radiation sources to measure their emissions.

The resulting data was then harvested for processing through a stack of custom high-speed ADC cards. Current densities from as low as a few milliamps to hundreds of amps were tested across forward-biased PN diode junctions using a computer-controlled DC power supply, resulting in a variety of spectra and showing the resulting thermionic photon emission at higher currents to have a preponderance in the infra-red region.

Incandescent luminescence in action, through an infra-red pyrometer.
Incandescent luminescence in action, through an infra-red pyrometer.

A series of experiments were conducted to investigate a related effect first described by those early scientists in the field: that the atmosphere in which the semiconductor junction sits has a significant effect on the way it exhibits incandescent luminescence. Bathing it in gaseous CO₂ or nitrogen was found to reduce the phenomenon by as much as 95%, while immersing it in liquid nitrogen resulted in it becoming completely unobservable. Oxygen-rich atmospheres by comparison served to enhance the luminescence observed, to the point that in one of pure oxygen it reached an efficiency level of 100%.

The high conversion efficiencies and rapid onset of incandescent luminescence once it has been triggered compares favourably to those of existing devices such as LEDs or wire-wound resistors used where either infra-red or visible light is required. The researchers expect the effect to be exploited in such product families as photographic flash generators, electronic igniters, and other short-duration high-intensity applications. Given their obvious advantages, we’d expect their effects on those particular markets to be nothing short of incendiary.

Thanks Ellie D. Martin-Eberhardt for some invaluable inspiration and technical help with covering this story.

Near-IR spectrum: Deglr6328 [CC-BY-SA-3.0].

Test chamber: David Monniaux [CC-BY-SA-3.0].

Infra-red image: National Institute of Standards and Technology [Public domain].

An 8-Bit ALU, Entirely From NAND Gates

One of the things that every student of digital electronics learns, is that every single logic function can be made from a combination of NAND gates. But nobody is foolhardy enough to give it a try, after all that would require a truly huge number of gates!

Someone evidently forgot to tell [Notbookies], for he has made a complete 8-bit ALU using only 4011B quad NAND gates on a set of breadboards, and in doing so has created a minor masterpiece with his wiring. It’s inspired by a series of videos from [Ben Eater] describing the construction of a computer with the so-called SAP (Simple As Possible) architecture. The 48 4011B DIP packages sit upon 8 standard breadboards, with an extra one for a set of DIP switches and LEDs, and a set of power busbar breadboards up their sides. He leaves us with the advice borne of bitter experience: “Unless your goal is building a NAND-only computer, pick the best IC for the job“.

We have covered countless processors and processor components manufactured from discrete logic chips over the years, though this makes them no less impressive a feat. The NedoNAND has been a recent example, a modular PCB-based design. TTL and CMOS logic chips made their debut over 50 years ago so you might expect there to be nothing new from that direction, however we expect this to be  well of projects that will keep flowing for may years more.

Via /r/electronics/.