Flight Of The Pterothopter: A Jurassic-Inspired Ornithopter

Ornithopters look silly. They look like something that shouldn’t work. An airplane with no propeller and wings that go flappy-flappy? No way that thing is going to fly. There are, however, a multitude of hobbyists, researchers, and birds who would heartily disagree with that sentiment, because ornithopters do fly. And they are almost mesmerizing to watch when they do it, which is just one reason we love [Hobi Cerdas]’s build of the Pterothopter, a rubber band-powered ornithopter modeled after a pterodactyl.

All joking aside, the science and research behind ornithopters and, relatedly, how living organisms fly is fascinating in itself — which is why [Lewin Day] wrote that article about how bees manage to become airborne. We can lose hours reading about this stuff and watching videos of prototypes. While most models we can currently build are not as efficient as their propeller-powered counterparts, the potential of evolutionarily-perfected flying mechanisms is endlessly intriguing. That alone is enough to fuel builds like this for years to come.

As you can see in the video below, [Hobi Cerdas] went through his own research and development process as he got his Pterothopter to soar. The model proved too nose-heavy in its maiden flight, but that’s nothing a little raising of the tail section and a quick field decapitation couldn’t resolve. After a more successful second flight, he swapped in a thinner rubber band and modified the wing’s leading edge for more thrust. This allowed the tiny balsa dinosaur to really take off, flying long enough to have some very close encounters with buildings and trees.

For those of you already itching to build your own Pterothopter, the plans come from the Summer 2017 issue of Flapping Wings, the official newsletter of the Ornithopter Society (an organization we’re so happy to learn about today). You can also find more in-depth ornithopter build logs to help you get started. And, honestly, there’s no reason to limit yourself to uncontrolled flight; we’ve come across some very impressive RC ornithopters in the past.

Continue reading “Flight Of The Pterothopter: A Jurassic-Inspired Ornithopter”

Organic Ornithopter Sensor Drone

Bees. The punchline to the title is bees carrying sensors like little baby bee backpacks. We would run out of fingers counting the robots which emulate naturally evolved creatures, but we believe there is a lot of merit to pirating natural designs, but researchers at the University of Washington cut out the middle-man and put their sensors right on living creatures. They measured how much a bee could lift, approximately 105 milligrams, then built a sensor array lighter than that. Naturally, batteries are holding back the design, and the rechargeable lithium-ion is more than half of the weight.

When you swap out brushless motors for organics, you gain and lose some things. You lose the real-time control, but you increase the runtime. You lose the noise, but you also lose the speed. You increase the range, but you probably wind up visiting the same field over and over. If your goal is to monitor the conditions of flowering crops, you may be ready to buy and install, but for the rest of us, dogs are great for carrying electronics. Oh yes. Cats are not so keen. Oh no.

Scratch-Built Ornithopter: Here’s How I Flapped My Way To Flight

One of humankind’s dreams has always been to fly like a bird. For a hacker, an achievable step along the path to that dream is to make an ornithopter — a machine which flies by flapping its wings. An RC controlled one would be wonderful, controlled flight is what everyone wants. Building a flying machine from scratch is a big enough challenge, and a better jumping-off point is to make a rubber band driven one first.

I experimented with designs which are available on the internet, to learn as much as possible, but I started from scratch in terms of material selection and dimensions. You learn a lot about flight through trial and error, and I’m happy to report that in the end I achieved a great little flyer built with a hobby knife and my own two hands. Since then I’ve been looking back on what made that project work, and it’s turned into a great article for Hackaday. Let’s dig in!

Continue reading “Scratch-Built Ornithopter: Here’s How I Flapped My Way To Flight”

Amazing Flight Of A 3D Printed Rubber Band Powered Ornithopter

We’re actually going to link to an old post from back in February because we think it’s equally as impressive as the most recent work. This is a 3D printed ornithopter powered by a rubber band (translated). The frame is much like a traditional rubber band plane. The difference is that after winding it up it doesn’t spin a propeller. The flapping of the four plastic membrane wings makes it fly like magic. Seriously, check out the demo below… we almost posted this as “Real or Fake?” feature if we hadn’t seen similar offerings a couple of years back.

The flight lasts a relatively long time when considering the quick winding before launch is all that powered it. But the most recent offerings (translated) from the site include the motorized ornithopter design seen above. It carries a small Lithium cell for continuous flight. These designs have a 3D printed gear system which makes them a bit more complicated, but brings steering and remote control to the party. If you want one of your own they’re working on a small run of kits. We figure it’d be a lot more fun to prototype and print your own. Sure, it’s reinventing the wheel. But it’s a really cool wheel!

Continue reading “Amazing Flight Of A 3D Printed Rubber Band Powered Ornithopter”

First Hovering Ornithopter NAV

DARPA has awarded an extension to AeroVironment for their work on the Nano Air Vehicle project.  The prototype seen above, called Mercury, is an ornithopter which means it flaps it’s wings. It is the first to show controlled hovering. Look closely, there’s no rudder or tail. Mercury uses the two wings for both lift and control. Ornithopters themselves aren’t new, we’ve even covered them before. Usually they use the flapping wings for propulson and a tail to steer as they travel like an airplane. We would really love to see some detail shots of Mercury.

[via slashdot]

12″ RC Ornithopter

rc ornithopter

There was a little interest in Graham’s 3D scanning probe, but this is what he is normally using his tiny CNC machine for: manufacturing components for a tiny RC ornithopter. The scale of this thing is amazing. From the tiny gear train to the 0.5mm carbon spars the frame is constructed from. The rudder control only weighs one gram and the entire device comes in at 17 grams.

Continue reading “12″ RC Ornithopter”

Hackaday Podcast 113: Python Switching To Match, A Magnetic Dyno, A Flying Dino, And A Spinning Sequencer

Hackaday editors Mike Szczys and Elliot Williams recap a week of great hacks. You won’t want to miss the dynamometer Leo Fernekes built to measure the power output of his Sterling engine, which is also DIY. In this age of lithium-powered multirotors, it’s nice to step back and appreciate a hand-built rubberband-powered ornithopter.

We have a surprising amount to say about Python’s addition of the match statement (not be be confused with switch statements). And when it comes to electromechanical synth gear, it’s hard to beat a spinning tape-head sequencer.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (~60 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 113: Python Switching To Match, A Magnetic Dyno, A Flying Dino, And A Spinning Sequencer”