Hack On Self: Sense Of Time

Every now and then, a commercial product aims to help you in your life journey, in a novel way, making your life better through its presence. Over the years, I’ve been disappointed by such products far more often than I have been reassured, seeing each one of them rendered unimaginative and purposeless sometimes even despite the creator’s best intentions. The pressures of a commercial market will choke you out without remorse, metal fingers firmly placed on your neck, tightening with every move that doesn’t promise profit, and letting money cloud your project’s vision. I believe that real answers can only come from within hacker communities, and as we explore, you might come to see it the same way.

This is the tip of the iceberg of a decade-long project that I hope to demonstrate in a year or two. I’d like to start talking about that project now, since it’s pretty extensive; the overall goal is about using computers to help with human condition, on a personal level. There’s a lot of talk about computers integrating into our lives – even more if you dare consult old sci-fi, much of my inspiration.

Tackling a gigantic problem often means cutting it down into smaller chunks, though, so here’s a small sub-problem I’ve been working on, for years now, on and off: Can you use computers to modify your sense of time?

Continue reading “Hack On Self: Sense Of Time”

AI Kayak Controller Lets The Paddle Show The Way

Controlling an e-bike is pretty straightforward. If you want to just let it rip, it’s a no-brainer — or rather, a one-thumber, as a thumb throttle is the way to go. Or, if you’re still looking for a bit of the experience of riding a bike, sensing when the pedals are turning and giving the rider a boost with the motor is a good option.

But what if your e-conveyance is more of the aquatic variety? That’s an interface design problem of a different color, as [Braden Sunwold] has discovered with his DIY e-kayak. We’ve detailed his work on this already, but for a short recap, his goal is to create an electric assist for his inflatable kayak, to give you a boost when you need it without taking away from the experience of kayaking. To that end, he used the motor and propeller from a hydrofoil to provide the needed thrust, while puzzling through the problem of building an unobtrusive yet flexible controller for the motor.

His answer is to mount an inertial measurement unit (IMU) in a waterproof container that can clamp to the kayak paddle. The controller is battery-powered and uses an nRF link to talk to a Raspberry Pi in the kayak’s waterproof electronics box. The sensor also has an LED ring light to provide feedback to the pilot. The controller is set up to support both a manual mode, which just turns on the motor and turns the kayak into a (low) power boat, and an automatic mode, which detects when the pilot is paddling and provides a little thrust in the desired direction of travel.

The video below shows the non-trivial amount of effort [Braden] and his project partner [Jordan] put into making the waterproof enclosure for the controller. The clamp is particularly interesting, especially since it has to keep the sensor properly oriented on the paddle. [Braden] is working on a machine-learning method to analyze paddle motions to discern what the pilot is doing and where the kayak goes. Once he has that model built, it should be time to hit the water and see what this thing can do. We’re eager to see the results.
Continue reading “AI Kayak Controller Lets The Paddle Show The Way”

Designing A Quality Camera Slider Can Be Remarkably Satisfying

Camera sliders are great creative tools, letting you get smooth controlled shots that can class up any production. [Anthony Kouttron] decided to build one for an engineering class, and he ended up mighty satisfied with what he and his team accomplished.

As an engineering class project, this wasn’t a build done on a whim. Instead, [Anthony] and his fellow students spent plenty of time hashing out what they needed this thing to do, and how it should be built. An Arduino was selected as the brains of the operation, as a capable and accessible microcontroller platform. Stepper motors and a toothed belt drive were used to move the slider in a controllable fashion. The slider’s control interface was an HD44780-based character LCD, along with a thumbstick and two pushbuttons. The slider relied on steel tubes for a frame, which was heavy, but cost-effective and easy to fabricate. Much of the parts were salvaged from legendary e-waste bins on the university grounds.

The final product was stout and practical. It may not have been light, but the steel frame and strong stepper motor meant the slider could easily handle even heavy DSLR cameras. That’s something that lighter builds can struggle with.

Ultimately, it was an excellent learning experience for [Anthony] and his team. As a bonus, he got some great timelapses out of it, too. Video after the break.

Continue reading “Designing A Quality Camera Slider Can Be Remarkably Satisfying”

Hackaday Podcast Episode 270: A Cluster Of Microcontrollers, A Rocket Engine From Scratch, And A Look Inside Voyager

Join Hackaday Editors Elliot Williams and Tom Nardi as they get excited over the pocket-sized possibilities of the recently announced 2024 Business Card Challenge, and once again discuss their picks for the most interesting stories and hacks from the last week. There’s cheap microcontrollers in highly parallel applications, a library that can easily unlock the world of Bluetooth input devices in your next project, some gorgeous custom flight simulator buttons that would class up any front panel, and an incredible behind the scenes look at how a New Space company designs a rocket engine from the ground up.

Stick around to hear about the latest 3D printed gadget that all the cool kids are fidgeting around with, a brain-computer interface development board for the Arduino, and a WWII-era lesson on how NOT to use hand tools. Finally, learn how veteran Hackaday writer Dan Maloney might have inadvertently kicked off a community effort to digitize rare documentation for NASA’s Voyager spacecraft.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download your very own copy of the podcast right about here.

Continue reading “Hackaday Podcast Episode 270: A Cluster Of Microcontrollers, A Rocket Engine From Scratch, And A Look Inside Voyager”

Retrogadgets: Butler In A Box

You walk into your house and issue a voice command to bring up the lights and start a cup of coffee. No big deal, right? Siri, Google, and Alexa can do all that. Did we mention it is 1985? And, apparently, you were one of the people who put out about $1,500 for a Mastervoice “Butler in a Box,” the subject of a Popular Science video you can see below.

If you think the box is interesting, the inventor’s story is even stranger. [Kevin] got a mint-condition Butler in a Box from eBay. How did it work, given in 1983, there was no AI voice recognition and public Internet? We did note that the “appliance module” was a standard X10 interface.

Continue reading “Retrogadgets: Butler In A Box”

Commodore CHESSmate Replica Runs On The ESP32

The Commodore CHESSmate chess computer might not be terribly well known, but that doesn’t make it any less worthy of being reproduced. If anything it is more important, as it gives more people an opportunity to use one of these devices, yet beyond a purely emulated experience the real user interface is harder to experience.

Internals of the reproduction Commodore ChessMate (Credit: Michael Gardi)

This is where [Michael Gardi]’s modernized replica provides a highly accessible version, consisting of a custom PCB with an ESP32 as the brains of the system. Although decidedly overkill next to the 6502 in the original CHESSmate, it makes the project far easier for others to assemble as it contains few components that shouldn’t be readily available.

The ESP32 is mounted on a small daughterboard which plugs into the main PCB with the buttons, LEDs and indicators. The whole stack is then inserted into the 3D printed reproduction case. These 3D models along with the ESP32 port of the CHESSmate firmware can be found in the GitHub repository, along with a minimalist frame and a ‘CHESSmate Lite’ version as alternative enclosure options for those who somehow don’t appreciate the delightful 1980s aesthetics.

We covered the Commodore CHESSmate last year, including a highly faithful reproduction built by [Hans Otten], which [Michael] read the day after meeting [Peter Jennings], the author of MicroChess (which the CHESSmate uses internally) at an event at York University. Taking this as a sign, he set to work on this particular project.

We’re not sure if there’s really a cosmic force directing [Michael] towards his next project, but if there is, we’d like to take this opportunity to thank it for doing a fantastic job so far.

A render of the Melodio Self Mate music player with it's front plate removed. It's a grey device with a small screen and navigation wheel, similar to a chunky iPod. It has an IR blaster LED in the top and various exposed screw holes letting everyone know that this is a device you can open.

Melodio Self Mate

While the proliferation of the smartphone has caused the personal music player (PMP) market to mostly evaporate, there are still those who prefer a standalone device for their music. The Melodio Self-Mate is one such spiritual successor to the iPod.

Music-only devices really benefit from the wheel interface pioneered by Apple, so we still see it in many of the new Open Source PMPs including this one and the Tangara. The Melodio uses the ubiquitous ESP32 for its brains coupled with a TI PCM5102A DAC and TI TPA6130A2 headphone amp for audio. A slider on the side of the device allows you to switch it between mass storage mode and programming mode for the ESP32.

Since this device packs a little more horsepower and connectivity than the original iPods, things like listening to Spotify are doable once assembled, instead of having to completely rebuild the device. Speaking of building, there are only renders on the GitHub, so we’re not sure if this project has made the jump IRL yet. With more people concerned about the distractions of smartphones, maybe this renaissance of open PMPs will lead to a new golden age of music on the go?

Miss the halcyon days of the iPod? They’re easier to hack now than ever, and if you really want to go old school, how about a podcast on a floppy?