Making A Kit-Kat Clock Even Creepier

If there’s anything as American as baseball and apple pie, it’s gotta be the Kit-Kat clock in the kitchen. For the unfamiliar, the Kit-Kat clock is special in that its pendulum tail and eyes move back and forth with each passing second. They’re equal parts cute and creepy.

But not this particular Kit-Kat, not once [Becky Stern] got a hold of it. The cute/creepy scales have been tipped, because the eyes of this Kat follow you around the room. “You” in this case is fellow maker [Xyla Foxlin], whom [Becky] drew in the Maker Secret Santa pool. See, [Xyla] loves cats, but is deathly allergic to them. So really, what better gift is there?

In order to make this happen, [Becky] started by disconnecting the long lever that link the eyes and the tail, which move together, and connected a servo horn to the eyes. [Becky] drilled out the nose in order to fit the camera, which is connected to a Seeed Grove AI Vision board with a Xiao RP2040 piggybacked on top.

While soldering on the servo wires, [Becky] accidentally detached a tiny capacitor from the AI Vision board, but it turns out that it wasn’t critical. Although she only had to write one line of code to get it to work, it ended up working too well, with the eyes darting around really quickly. By making the servo move in timed increments to the new positions, it’s now much more creepy. Be sure to check out the build video after the break.

You know we can’t resist a clock build around here, especially when those clocks are binary.

Continue reading “Making A Kit-Kat Clock Even Creepier”

Parachute Drops Are Still A Viable Solution For Data Recovery From High Altitude Missions

Once upon a time, when the earliest spy satellites were developed, there wasn’t an easy way to send high-quality image data over the air. The satellites would capture images on film and dump out cartridges back to earth with parachutes that would be recovered by military planes.

It all sounds so archaic, so Rube Goldberg, so 1957. And yet, it’s still a viable method for recovering big globs of data from high altitude missions today. Really, you ask? Oh, yes indeed—why, NASA’s gotten back into the habit just recently!

Continue reading “Parachute Drops Are Still A Viable Solution For Data Recovery From High Altitude Missions”

The IBM 5100, image from December 1975 issue of BYTE.

Bringing APL To The Masses: The History Of The IBM 5100

The 1970s was a somewhat awkward phase for the computer industry — as hulking, room-sized mainframes became ever smaller and the concept of home and portable computers more capable than a basic calculator began to gain traction. Amidst all of this, two interpreted programming languages saw themselves being used the most: BASIC and APL, with the latter being IBM’s programming language of choice for its mainframes. The advantages of being able to run APL on a single-user, portable system, eventually led to the IBM 5100. Its story is succinctly summarized by [Bradford Morgan White] in a recent article.

The IBM PALM processor.
The IBM PALM processor.

Although probably not well-known to the average computer use, APL (A Programming Language) is a multi-dimensional array-based language that uses a range of special graphic symbols that are often imprinted on the keyboard for ease of entry.

It excels at concisely describing complex functions, such as the example provided on the APL Wikipedia entry for picking 6 pseudo-random, non-repeating integers between 1 and 40 and sorting them in ascending order:

x[x6?40]

Part of what made it possible to bring the power of APL processing to a portable system like the IBM 5100 was the IBM PALM processor, which implemented an emulator in microcode to allow e.g. running System/360 APL code on a 5100, as well as BASIC.

Despite [Bradford]’s claim that the 5100 was not a commercial success, it’s important to remember the target market. With a price tag of tens of thousands of (inflation-adjusted 2023) dollars, it bridged the gap between a multi-user mainframe with APL and far less capable single-user systems that generally only managed BASIC. This is reflected in that the Commodore SuperPET supported APL, and the 5100 was followed by the 5110 and 5120 systems, and that today you can download GNU APL which implements the ISO/IEC 13751:2001 (APL2) standard.

We’ve previously looked at the Canadian-made MCM/70, another portable APL machine that embodied the cyberdeck aesthetic before William Gibson even gave it a name.

Top image: The IBM 5100, image from December 1975 issue of BYTE.

Thanks to [Stephen Walters] for the tip.

It’s An Audio Distortion Analyzer, Just Not The One You Were Hoping For

An audio distortion analyzer is a specialist piece of analogue test equipment that usually costs a lot of money and can be hard to track down on the second hand market. Finding one is a moment of luck for the average engineer then, but [Thomas Scherrer OZ2CPU]’s discovery isn’t quite what he might have hoped for. Nonetheless, his Bang and Olufsen K3 Distortion meter DM1 from 1979 is still an interesting and high quality piece of test equipment, and the video below the break makes for a worthwhile watch.

Bang and Olufsen are best known for high-end design Hi-Fi units, thus it’s a surprise to find that in the past they also manufactured test equipment. This distortion meter isn’t a general purpose one, instead it’s designed to measure tape recorders in particular, and it uses an elegant technique. Instead of injecting a sine wave and removing it from what comes out in order to measure the products of the distortion, it records a 333 Hz sine wave onto a tape, then measures the strength of its 3rd harmonic at 1 kHz as an indication of distortion. It’s a working distortion meter made with clever analogue circuitry for a fraction of the cost of the more conventional models that HP would have sold you at the same time, even if it doesn’t give the same THD figure you might have been looking for.

If distortion interests you, it’s a subject we’ve looked at in the past.

Continue reading “It’s An Audio Distortion Analyzer, Just Not The One You Were Hoping For”

A 360° View Of A Classic Drive-In Speaker

Readers of a certain vintage no doubt have pleasant memories of drive-in theaters, and we are chuffed to see that a few hundred of these cinematic institutions endure today. While most theaters broadcast the audio on an FM station these days, the choice is still yours to use the chunky, often crackly speaker that attaches to the car window.

Seeking to relive the drive-in audio experience at home, [codemakesitgo] picked up a drive-in theater speaker on eBay and turned it into a Bluetooth device that sounds much better than it did in its weather-beaten days outside.

There isn’t a whole lot to this build — it’s essentially a new speaker cone, a Bluetooth receiver, an amp, and a battery. The real story is in the way that [codemakesitgo] uses Fusion360 to bring it all together.

After 3D scanning the case, [codemakesitgo] made sure each piece would fit, using a custom-built model of the new speaker and a 3D model of a custom PCB. Good thing, too, because there is barely enough clearance for the speaker. Be sure to check out the brief demo video after the break.

Continue reading “A 360° View Of A Classic Drive-In Speaker”

Recycling Batteries With Bacteria

Vehicle battery recycling is going to be a big deal with all the electric cars hitting the roads. What if you could do it more effectively with the power of microbes? (via Electrek)

“Li-ion” vehicle batteries can be any of a number of different chemistries, with more complex cathode makeups, like NCM (LiNixMnyCo1-x-yO2), being understandably more complex to separate into their original constituents. Researchers and companies in the industry are hoping to find economically-viable ways to get these metals back for both the environmental and economic benefits a closed loop system could provide.

Researchers in the UK developed a method using two species of bacteria to precipitate Ni, Mn, and Co from the liquid leached from cathodes. Li remained in the liquid where it could be processed separately like that obtained in Li brine. Mn was precipitated first by S. oneidensis MR-1, and a following step removed Ni and Co with D. alaskensis G20. The researchers report that Ni and Co show promise for further separation via biological methods, but more research is required for this step.

If you’re looking for some more interesting ways bacteria can be harnessed for the energy system, checkout this microbial fuel cell, another using soil, and an enzyme derived from bacteria that can pull electricity from thin air.

Simulate A Better Termination

If you are making certain precision measurements, you know you need to terminate the connections with the right impedance, normally 50 ohms. Proper termination minimizes reflections on the line which can disturb measurements. Some instruments already have 50 ohm terminations, at least optionally. If not, you usually use little connector shells with the right resistor inside. [Joe Smith] decided to see if he could improve on the normal terminations using circuit simulation techniques. You can see a video of the work below.

In the process of testing, he also needs a resistive splitter, and, just like with the terminators, he shows you what’s going on inside. It was easy to compare since he had a scope that could independently set channels to have a 50-ohm termination or a 1 megaohm termination.

Continue reading “Simulate A Better Termination”