Small Combat Robots Pack A Punch In Antweight Division

Two robots enter, one robot leaves! Combat robotics are a fantastic showcase of design and skill, but the mechanical contenders don’t have to be big, heavy, and expensive. There is an Antweight division for combat robots in which most contenders weigh a mere 150 grams, and [Harry Makes Things] shows off four participants for Antweight World Series (AWS) 64.

Clockwise: ReLoader, Shakma, Sad Ken, and HobGoblet antweight combat robots.

Each of them have very different designs, and there are plenty of photos as well as insightful details about what was done and how well it worked. That’s exactly the kind of detail we love to read about, so huge thanks to [Harry] for sharing!

In combat robotics, contenders generally maneuver their remote-controlled machines to pin or immobilize their opponent. This can happen as a result of damaging them to the point that they stop functioning, but it can also happen by rending them helpless by working some kind of mechanical advantage. Continue reading “Small Combat Robots Pack A Punch In Antweight Division”

Mecanum-Wheeled Robot Chassis Takes Commands From PS4 Controller

Mecanum wheels are popular choices for everything from robots to baggage handling equipment in airports. Depending on their direction of rotation, they can generate forces in any planar direction, providing for great maneuverability. [ATOM] set about building just such a robot chassis, and learned plenty in the process.

The design is similar to those we’ve seen in the past. The robot has four mecanum wheels, each driven by its own motor. Depending on the direction of rotation of the various wheels, the robot can move forward, backwards, and even strafe left and right. Plus, it can effectively tank turn without excessive slippage thanks to the rollers on each wheel. An ESP32 serves as the brains of the ‘bot, allowing it to be readily remote controlled via a PS4 gamepad over Bluetooth.

If you’re looking to build a small robot chassis that’s great at moving about in tight, small spaces, this could be a great project to learn with. All the necessary parts are relatively easily available, and the PCB files can be had on GitHub.

If you like the idea of mecanum wheels but need something bigger, consider starting with a set of hoverboard wheel motors. Continue reading “Mecanum-Wheeled Robot Chassis Takes Commands From PS4 Controller”

Infant is wearing sensor vest as she is held by her mom. ECG, respiration, and accelerometry data is also showing.

Open Source Wearables For Infants

We’ve seen plenty of hacks that analyze biometric signals as measures of athletic performance, but maybe not as many hacks that are trying to study behavior. Well, that’s exactly what developmental psychologists at Indiana University and the University of East Anglia have done with their open-source, wireless vest for measuring autonomic function in infants.

infant biosensor vest for heart rate, motion, and respiratory rateTheir device includes a number of components we’ve seen already. There is an HC-05 Bluetooth module, AD8232 electrocardiography (ECG) analog front-end, LIS3DH 3-axis accelerometer, MCP73831 LiPo charger, a force-sensitive resistor for measuring respiration, and a Teensy microcontroller. Given how sensitive an infant’s skin can be, they opted for fabric electrodes for the ECG instead of those awful sticky ones that we’re accustomed to. They then interfaced the conductive fabric with copper plates using snap fasteners (or press studs or snap buttons, whichever terminology you’re more familiar with). The copper plates were connected to the circuit board using standard electrical wire. Then, they embedded the sensors into a vest they sewed together themselves. It’s basically a tiny weighted vest for infants but it seems well-padded enough to be somewhat comfortable.

They did a short test analyzing heart and breathing rates during a period of “sustained attention,” basically when you’re quietly fixated on a single object or activity for a period of a few minutes or longer. They were really pleased with the vest’s ability to collect consistent data and noted that heart and respiratory rate variability decreased during the sustained activity test, which was an expected outcome. Apparently, when you’re pretty fixated on a singular task, your body naturally calms down, so to speak, and the variability in some of your physiological responses decreases. Well, unless someone slowly walks up behind you and pinches you, of course.

They provided detailed instructions for recreating the vest, so be sure to check those out. They probably want their device to look a lot less than body armor though. Maybe the Sewbo can help them out with their next iteration.

Real Robot One Is… Real

Most of the robot arms we see are cool but little more than toys. Usually, they use RC servos to do motion and that’s great for making some basic motion, but if you want something more industrial and capable, check out [Pavel’s] RR1 — Real Robot One. The beefy arm has six degrees of freedom powered by stepper motors and custom planetary gearboxes. Each joint has an encoder for precise position feedback. The first prototype is already working, as you can see in the video below. Version two is forthcoming.

When you see the thing in action, you can immediately tell it isn’t a toy. There are four NEMA23 steppers and three smaller NEMA17 motors. While there are 3D printed parts, you can see a lot of metal in the build, also. You can see a video of the arm lifting up a 1 kilogram barbell and picking up a refreshing soft drink.

Continue reading “Real Robot One Is… Real”

KachiChan_Sisyphus_RobotArms-On-A-Platform

Robot Repeatedly Rearranges Remnants In The Round

Sisyphus is an art installation by [Kachi Chan] featuring two scales of robots engaged in endless cyclic interaction. Smaller robots build brick arches while a giant robot pushes them down. As [Kachi Chan] says “this robotic system propels a narrative of construction and deconstruction.” The project was awarded honorary mention at the Ars Electronica’s Prix Ars 2022 in the Digital Communities category. Watch the video after the break to see the final concept.

KachiChan_Sisyphus_RobotArms-On-A-Platform_detail-view

[Kachi Chan] developed the installation in pre-visualizations and through a series of prototypes shown in a moody process film, the second video after the break. While the film is quite short on details, you’ll see iterations of the robot arm and computer vision system. According to this article on the project [Kachi Chan] used Cinema 4D to simulate the motion, ROS for control, PincherX150 robotic arms modified with Dynamixel XM 430 & XL430 servo motors, and custom 3D prints.

We’ve covered another type of Sisyphus project, sand tables like this and the Sisyphish. Continue reading “Robot Repeatedly Rearranges Remnants In The Round”

Dead Spider Becomes Robot Gripper: It’s Necrobotics!

Robot arms and grippers do important work every hour of every day. They’re used in production lines around the world, toiling virtually ceaselessly outside of their designated maintenance windows.

They’re typically built out of steel, and powered by brawny hydraulic systems. However, some scientists have gone for a smaller scale approach that may horrify the squeamish. They’ve figured out how to turn a dead spider into a useful robotic gripper.

The name of this new Frankensteinian field? Why, it’s necrobotics, of course!

Continue reading “Dead Spider Becomes Robot Gripper: It’s Necrobotics!”

Industrial Robot Repurposed To Make S’Mores

It’s summer time in the Northern Hemisphere, and that means campfires for cooking hot dogs, keeping the mosquitoes away, and of course, making s’mores. For our far-flung friends, that’s a fire roasted marshmallow and a square of chocolate smashed between two graham crackers. So called because when you’re done, you’ll want s’more. It’s an easy enough recipe that any child can tell you how to make it. But what if you’re not a child? What if you don’t even have hands, because you’re an industrial robot? This is the challenge that [Excessive Overkill] has taken on in the video below the break.

Starting with a Fanuc S-420 i W industrial robot built in 1997, [Excessive Overkill] painstakingly taught his own personal robot how to make S’Mores. Hacking the microwave with pneumatic cylinders to get the door open was a nice touch, and so are the vacuum grippers at the business end of the S’More-bot.

We know, we said you were supposed to make them on a campfire — but who wants to risk cooking their vintage robotic arm just to melt some chocolate?

There’s a lot of story behind this hack, and [Excessive Overkill] explains how they acquired, transported, and three phase powered an out of date industrial robot in another of their videos. Of course, this is Hackaday so it’s a subject that’s come up before in the reverse engineering of an industrial robot that we covered some time back.

Continue reading “Industrial Robot Repurposed To Make S’Mores”