An Efficient Homemade Wood Furnace

For poor [workshop from scratch], winter brings the joy of a cold workshop. Since the building is structurally made from tin, warming up the room is difficult.

Naturally, the solution was to construct a homemade wood furnace. The build starts off with an angle grinder being taken to a compressed air tank. After sawing off the top and sanding down the edges, the builder slices out an opening and welds together some rods into a stand for the center. He then proceeds to weld some external frames for the furnace, as well as a chimney stack, some nifty covers joined by hinges, and a fan/temperature regulator to keep the fire going.

Most of the pieces seem to come from scrap metal lying around the workshop, although the degree to which the entire project comes together is quite smooth. Some filter and spray paint do the trick for cleaning up the furnace and making it look less scrappy. The last step? A stack of wooden logs and a blow torch to start the fun. Outside of the furnace, an LCD screen keeps track of the temperature, giving some feedback and control.

The result is perhaps a too effective at warming up the workshop, but the problem sure is solved!

Continue reading “An Efficient Homemade Wood Furnace”

This Week In Security:Malicious Previews, VNC Vulnerabilities, Powerwall, And The 5th Amendment

Malware embedded in office documents has been a popular attack for years. Many of those attacks have been fixed, and essentially all the current attacks are unworkable when a document is opened in protected view. There are ways around this, like putting a notice at the top of a document, requesting that the user turn off protected view. [Curtis Brazzell] has been researching phishing, and how attacks can work around mitigations like protected view. He noticed that one of his booby-trapped documents phoned home before it was opened. How exactly? The preview pane.

The Windows Explorer interface has a built-in preview pane, and it helpfully supports Microsoft Office formats. The problem is that the preview isn’t generated using protected view, at least when previewing Word documents. Generating the preview is enough to trigger loading of remote content, and could feasibly be used to trigger other vulnerabilities. [Curtis] notified Microsoft about the issue, and the response was slightly disappointing. His discovery is officially considered a bug, but not a vulnerability.

VNC Vulnerabilities

Researchers at Kaspersky took a hard look at several VNC implementations, and uncovered a total of 37 CVEs so far. It seems that several VNC projects share a rather old code-base, and it contains a plethora of potential bugs. VNC should be treated similarly to RDP — don’t expose it to the internet, and don’t connect to unknown servers. The protocol wasn’t written with security in mind, and none of the implementations have been sufficiently security hardened.

Examples of flaws include: Checking that a message doesn’t overflow the buffer after having copied it into said buffer. Another code snippet reads a variable length message into a fixed length buffer without any length checks. That particular function was originally written at AT&T labs back in the late 90s, and has been copied into multiple projects since then.

There is a potential downside to open source that is highlighted here. Open source allows poorly written code to spread. This isn’t a knock against open source, but rather a warning to the reader. Just because code or a project uses an OSS license doesn’t mean it’s secure or high quality code. There are more vulnerabilities still in the process of being fixed, so watch out for the rest of this story. Continue reading “This Week In Security:Malicious Previews, VNC Vulnerabilities, Powerwall, And The 5th Amendment”

Let A CPR Robot Save The Day

Four highschool students in Lyon France are building a CPR robot, with the aim of removing the endurance problem faced by those delivering this form of essential first aid.

By every after action report, CPR is an emotionally and physically exhausting way to save a life. When someone’s heart stops beating their breathing stops too. After that there’s a very small window in which to keep just enough oxygen in the blood to prevent brain damage and organ failure. A person has to precisely position their hands and press, repeatedly, with enough force to break someone’s sternum in order to keep their heart pumping; sometimes for over fifteen minutes waiting for rescue to arrive. On top of that, depending on which school of thought they learned the technique, they may be required to also force air into the patients lungs.

While this pushes the boundary of human endurance, a robot would not have the same issue. In fact, many of the existing problems are solved. CPAP Machines can force air into lungs all day long. A motor and a mechanism could position and provide the mechanical pumping motion to keep the blood flowing. Sensors could tell when the heart takes back over. The machine is currently a proof-of-concept built from plywood, and off-the-shelf parts. Yet it can maintain the 30 compression – 2 breath cycle indefinitely on a CPR Dummy.

It’s an interesting idea; while defibrillators do exist, they don’t always get the heart going in time. We wonder if someone more medically inclined can weigh in on this interesting idea.

Multi Material 3D Printing Makes Soft Robot

When you zoom in on a fractal you find it is made of more fractals. Perhaps that helped inspire the Harvard 3D printers that have various arrays of mixing nozzles. In the video below you can see some of the interesting things you can do with an array of mixing nozzles. The coolest, we think, is a little multi-legged robot that uses vacuum to ambulate across the bench. The paper, however, is behind a paywall.

There are really two ideas here. Mixing nozzles are nothing new. Usually, you use them to mimic a printer with two hot ends. That is, you print one material at a time and purge the old filament out when switching to the new filament. This is often simpler than using two heads because with a two head arrangement, both the heads have to be at the same height, you must know the precise offset between the heads, and you generally lose some print space since the right head can’t cross the left head and vice versa. Add more heads, and you multiply those problems. We’ve also seen mixing nozzles provide different colors.

Continue reading “Multi Material 3D Printing Makes Soft Robot”

Circuit Simulation In Python

Using SPICE to simulate an electrical circuit is a common enough practice in engineering that “SPICEing a circuit” is a perfectly valid phrase in the lexicon. SPICE as a software tool has been around since the 70s, and its open source nature means there are more SPICE tools around now to count. It also means it is straightforward enough to use with other software as well, like integrating LTspice with Python for some interesting signal processing circuit simulation.

[Michael]’s latest project involves simulating filters in LTspice (a SPICE derivative) and then using Python/NumPy to both provide the input signal for the filter and process the output data from it. Basically, it allows you to “plug in” a graphical analog circuit of any design into a Python script and manipulate it easily, in any way needed. SPICE programs aren’t without their clumsiness, and being able to write your own tools for manipulating circuits is a powerful tool.

This project is definitely worth a look if you have any interest in signal processing (digital or analog) or even if you have never heard of SPICE before and want an easier way of simulating a circuit before prototyping one on a breadboard.

Simple Acrylic Plates Make Kirlian Photography A Breeze

We know, we know – “Kirlian photography” is a term loaded with pseudoscientific baggage. Paranormal researchers have longed claimed that Kirlian photography can explore the mood or emotional state of a subject through the “aura”, an energy field said to surround and emanate from all living things. It’s straight-up nonsense, of course, but that doesn’t detract from the beauty of plasma aficionado [Jay Bowles]’ images produced by capacitive coupling and corona discharge.

Technically, what [Jay] is doing here is not quite Kirlian photography. The classic setup for “electrophotography” is a sandwich of photographic film, a glass plate, and a metal ground plate. An object with a high-voltage, high-frequency power supply attached is placed on top of the sandwich, and the resulting corona discharge exposes the film. [Jay]’s version is a thin chamber made of two pieces of solvent-welded acrylic and filled with water. A bolt between the acrylic panes conducts current from a Tesla coil – perhaps this one that we’ve featured before – into the water. When something is placed on the acrylic, a beautiful purple corona discharge streams out from the object.

It’s an eerie effect, and it’s easy to see how people can see an aura and attribute mystical properties to it. In the end, though, it’s not much different than touching a plasma globe, and just about as safe. Feeling a bit more destructive? Corona discharge is a great way to make art, both in wood and in acrylic.

Continue reading “Simple Acrylic Plates Make Kirlian Photography A Breeze”

Robot Vs. Superbug

Working in a university or research laboratory on interesting, complicated problems in the sciences has a romanticized, glorified position in our culture. While the end results are certainly worth celebrating, often the process of new scientific discovery is underwhelming, if not outright tedious. That’s especially true in biology and chemistry, where scaling up sample sizes isn’t easy without a lot of human labor. A research group from Reading University was able to modify a 3D printer to take some of that labor out of the equation, though.

This 3D printer was used essentially as a base, with the printing head removed and replaced with a Raspberry Pi camera. The printer X/Y axes move the camera around to all of the different sample stored in the print bed, which allows the computer attached to the printer to do most of the work that a normal human would have had to do. This allows them to scale up massively and cheaply, presumably with less tedious inputs from a large number of graduate students.

While the group hopes that this method will have wide applicability for any research group handling large samples, their specific area of interest involves researching “superbugs” or microbes which have developed antibiotic resistance. Their recently-published paper states that any field which involves bacterial motility, colony growth, microtitre plates or microfluidic devices could benefit from this 3D printer modification.