New Space Abort Systems Go Back To The Future

Throughout the history of America’s human spaceflight program, there’s been an alternating pattern in regards to abort systems. From Alan Shepard’s first flight in 1961 on, every Mercury capsule was equipped with a Launch Escape System (LES) tower that could pull the spacecraft away from a malfunctioning rocket. But by the first operational flight of the Gemini program in 1965, the LES tower had been deleted in favor of ejection seats. Just three years later, the LES tower returned for the first manned flight of the Apollo program.

Mercury LES Tower

With the Space Shuttle, things got more complicated. There was no safe way to separate the Orbiter from the rest of the stack, so when Columbia made its first test flight in 1981, NASA returned again to ejection seats, this time pulled from an SR-71 Blackbird. But once flight tests were complete, the ejector seats were removed; leaving Columbia and all subsequent Orbiters without any form of LES. At the time, NASA believed the Space Shuttle was so reliable that there was no need for an emergency escape system.

It took the loss of Challenger and her crew in 1986 to prove NASA had made a grave error in judgment, but by then, it was too late. Changes were made to the Shuttle in the wake of the accident investigation, but escape during powered flight was still impossible. While a LES would not have saved the crew of Columbia in 2003, another seven lives lost aboard the fundamentally flawed Orbiter played a large part in President George W. Bush’s decision to begin winding down the Shuttle program.

In the post-Shuttle era, NASA has made it clear that maintaining abort capability from liftoff to orbital insertion is a critical requirement. Their own Orion spacecraft has this ability, and they demand the same from commercial partners such as SpaceX and Boeing. But while all three vehicles are absolutely bristling with high-tech wizardry, their abort systems are not far removed from what we were using in the 1960’s.

Let’s take a look at the Launch Escape Systems for America’s next three capsules, and see where historical experience helped guide the design of these state-of-the-art spacecraft.

Continue reading “New Space Abort Systems Go Back To The Future”

Curbing Internet Addiction In A Threatening Manner

Those who have children of their own might argue that the youth of today are getting far too much internet time. [Nick] decided to put an emergency stop to it and made this ingenious internet kill switch to threaten teenagers with. Rather unassuming on the outside, the big red button instantly kills all network traffic as soon as you push it down, doing its label justice. Reset the toggle button, and the connection is restored, simple as that.

In order to achieve this, [Nick] fit inside the enclosure a Raspberry Pi Zero W, along with a battery and a wireless charging circuit for portability and completely wireless operation. The button is wired into the Pi’s GPIO and triggers a command to the router via SSH over WiFi, where a script listening to the signal tells it to drop the network interfaces talking to the outside world. It’s simple, it’s clean, and you can carry it around with you as a warning for those who dare disobey you. We love it.

Another use for big red buttons we’ve seen in the past is an AC power timer, but you can do just about anything with them if you turn one into an USB device. Check this one in action after the break.

Continue reading “Curbing Internet Addiction In A Threatening Manner”

A Stacked Peltier Cloud Chamber Build

Subatomic particles are remarkably difficult to see, but they can be made visible with the right techniques. Building a cloud chamber with dry ice is a common way to achieve this, but coming by the material can be difficult. [The Thought Emporium] wanted a more accessible build, and went for a Peltier-based design instead (Youtube link, embedded below).

By stacking several Peltier coolers in a cascade, it’s possible to increase the temperature differential generated. In this design, the copper plate of the chamber is cooled down to -33 degrees Fahrenheit (-36.11 Celcius), more than cold enough for the experiment to work. Alcohol is added to the glass chamber, and when it reaches the cold plate, it creates a super-saturated vapor. When disturbed by charged particles zipping out of a radioactive source, the vapor condenses, leaving a visible trail.

Cloud chambers are a popular experiment to try at home. It’s a great science fair project, and one that can be easily constructed with old computer parts and a couple of cheap modules from eBay. Just be careful when experimenting with radioactive sources. Video after the break.

Continue reading “A Stacked Peltier Cloud Chamber Build”

Pedal Faster! I Need To Join A Conference Call!

It is rare to find a car these days without some mechanism for charging a cell phone. After all, phones need charging all the time and we spend a lot of time in our cars. But what if you spend a lot of time on your bike? Five teens from Lynchburg, Virginia decided to build something to charge their phones from pedal power.

This isn’t a new idea, of course. Your alternator is charging your phone in your car, and bikes have had alternators connected to them for lights and other purposes. According to the team, you need to pedal about 4 miles per hour to get enough voltage to charge the phone. You can go faster though, because the circuit has a regulator. We especially liked how they determined the speed versus the voltage using a tachometer and an electric drill. We also liked the 3D printed parts such as the handlebar mount that you could probably repurpose for other things.

Continue reading “Pedal Faster! I Need To Join A Conference Call!”

The Basics Of SCRs

Although the silicon controlled rectifier or SCR has been around since 1957, it doesn’t get nearly the love an ordinary transistor does. That’s a shame because they are quite handy when it comes to controlling AC and DC voltages in things such as lamp dimmers, motor speed controllers, and even soldering iron temperature controllers. [Lewis Loflin] has a short video introduction that will help you get started with these devices.

One of the interesting properties of the device is that once you turn it on it will stay on until you do something specific to turn it back off — sort of, [Lewis] explains it in the video.

Continue reading “The Basics Of SCRs”

Hackaday Links Column Banner

Hackaday Links: July 14, 2019

The M5Stack is a plastic box loaded up with an ESP32, a display, some pin headers, and a few buttons. Why does this exist? It’s a platform of sorts, and we’ve seen people adding LoRa to the M5Stack as well as thermal cameras. Hot from random online retailers is the M5Stick, a smaller version of the ~Stack that still has a screen, still has pin headers, and still has an ESP32. It’s a new development platform that’s using a USB C plug (hot trends 2019), and it still has all the features of an ESP32.

Ever wonder how they put designs on skateboard decks, or graphic designs on luggage? That would be a UV printer — it’s basically an inkjet that uses UV-curing ink, but the print head has a Z axis, and the bed is usually huge. [Scotty] of Strange Parts recently took a look at a factory that makes UV printers. Yeah, there’s a lot of wiring that goes into these machines, and yeah, you can do a lot with them. Remember: the cheapest UV printers are about $3k, and yeah, you can print designs on PCBs with them.

Virgin Orbit is the Branson-branded take on the Stratolaunch; this is a rocket that uses a single 747 to loft a small rocket into the stratosphere and send it off into a sun-synchronous orbit. This week, Virgin Orbit has completed drop tests to characterize how the rocket falls away from the 747. This is also called ‘a bombing run’, and we could have used a few GoPros on the rocket itself.

Last weekend was ‘LeHack’, a French hacker/infosec conference. There was a coffee vending machine there, complete with touch screen and an offer to pay via your smartphone with an app. You know what happened. It turns out, you can take over all the accounts using the app. You can also brute force the user’s pins. Lesson learned? Why the hell does a coffee machine need an app?

The New Pallet Wood! First off, don’t make anything out of pallet wood unless you know what you’re doing; there’s some nasty chemicals in pallet wood. That said, you can make a fortune with pallet wood furniture on Etsy, and that’s doubly true if you make a pallet wood resin river table. This is the new pallet wood. Hollow core doors are easy to disassemble with a table saw, and provide two large sheets of plywood, and enough sticks to make a frame for something. What can you do with all this wood? Build a guitar, of course.

The Proof Is In The Box

Making bread dough is simple — it’s just flour and water, with some salt and yeast if you want to make things easy on yourself. Turning that dough into bread is another matter entirely. You need to punch that dough down, you need to let it rise, and you need to knead it again. At home, you’re probably content with letting the dough rise on the kitchen counter, but there’s a reason your home loaf doesn’t taste like what you would get at a good bakery. A bakery has a proofer, or a box that lets dough rise at a temperature that would be uncomfortable for humans, but perfect for yeast.

The leavening cell is a DIY proofing box that keeps dough at a steady 26° C to 28° C, the perfect temperature for making bread, pizza dough, and even yogurts. [vittorio] made this and the results look great.

The design of this build is simple enough and made out of 20×20 aluminum profiles shaped into a cubic frame. The outside of this box is 6mm thick wooden panels coated on the inside with a heat-reflective insulating mesh. Inside of that is a frame of metal mesh to which a six-meter long cable heating element is attached. This heating element is controlled via a thermostat with a probe temperature sensor on a timer. No, it’s not very complicated but the entire idea of a proofer is to have a slightly warm box.

You can check out the promo video for the Leavening Cell below.

Continue reading “The Proof Is In The Box”