Direction-Finding With Help From The Steam Deck

Direction-finding, or fox hunting, is a popular activity in ham radio circles where a group of people armed with radios attempt to locate a broadcasting source. Besides being a hobby for amateurs, it’s also a necessary tool in the belt of regulators who are attempting to track down violators of the air space. There are a lot of ways to figure out the precise location of a radio transmission, but this one manages to pull it off using both a boat and a Steam Deck, each armed with a software-defined radio.

This project comes to us from [Aaron] who is well known in the amateur radio circles for his SDR-focused Linux distribution called DragonOS; which has all the tools needed for a quality SDR experience, in this case KrakenSDR and DF Aggregator. He’s loaded everything up on a Steam Deck and left that in a secure location on the shore of a lake, while he carries second device with the same software with him on a boat. With the two devices listening for a specific signal, he’s able to quickly zero in on his friend on the shore who is broadcasting on the 70 cm band thanks to the help of all of these software packages.

While ham radio isn’t always known for being a youthful and exciting activity, the advent of software-defined radio and other digital modes seem to be shaking things up in that world. Certainly speeding around a lake on a boat is fun on its own as well, and a fox hunt like this can be done with something as small and simple as a Raspberry Pi too.

Continue reading “Direction-Finding With Help From The Steam Deck”

ERRF 22: Recreator 3D Turns Trash Into Filament

In Back to the Future, Doc Brown returns to 1985 with a version of his DeLorean time machine that has been modified with technology from the future. After telling Marty they need to go on yet another adventure, Doc recharges the DeLorean’s flux capacitor and time circuits by tossing pieces of garbage into the slick Mr. Fusion unit mounted to the rear of the vehicle. The joke being that, in the future, you could simply head over to the local big box store and pick up a kitchen appliance that’s capable of converting waste matter into energy.

Unfortunately, we’re nowhere near powering our homes with banana peels and beer cans. But if the Recreator 3D is any indication, the technology required to turn plastic bottles rescued from the trash into viable PET filament for your 3D printer is all but upon us. While there are still some aspects of the process that could stand to be streamlined, such as fusing multiple runs of filament together into one continuous roll, the core concepts all seem to be in place.

The MK5Kit Mini is currently in development with LDO Motors.

Creator [Josh Taylor] made the trip out to the 2022 East Coast RepRap Festival to not only show off the Recreator 3D, a project he’s been working on now for over a year, but to get people excited about the idea of turning waste plastic into filament. It’s not necessarily a new concept, and in fact [Josh] says earlier efforts such as the PETBOT are what inspired him to create his own open source take on the “pultrusion” concept.

According to [Josh], actually printing with the recycled filament isn’t that different from using commercial PETG, though it’s recommended you lower your speeds. A nozzle temperature of around 260 °C seems to work best, with the bed at 70 °C. Interestingly, the filament produced by the process is actually hollow inside, so the most critical change to make is increasing your extrusion rate to about 130% of normal to compensate for the internal void.

The current revision of the Recreator 3D, known as the MK5Kit, can be assembled using several core components salvaged from a low-cost Ender 3 printer in addition to a number of parts that the user will need to print themselves. For those who’d rather not source the parts, [Josh] says he hopes to get formal kits put together sometime next year, thanks to a partnership with LDO Motors.

But ultimately, [Josh] says the most important thing to him is that the plastic is recycled instead of getting sent to a landfill or incinerator. So whether you build a Recreator 3D or come up with your own design, all are welcome to the PET Pultruders United Facebook group he’s created to discuss the finer points of turning plastic trash into treasure.

Continue reading “ERRF 22: Recreator 3D Turns Trash Into Filament”

New Venue Gives Philly Maker Faire A Fresh Start

When we last checked in with the Philadelphia Maker Faire in 2019, one couldn’t help but be impressed with what the organizers had pulled off with just a fraction of the budget and resources it took to put on the defunct World Maker Faire in New York. We came away absolutely certain the event was on the verge of explosive growth, and that next year would be even bigger and better.

But of course, that didn’t happen. The COVID-19 pandemic meant that by the time the 2020 Faire should have kicked off, the logistics of holding a gathering much larger than a family dinner had become a serious hurdle. Philadelphia implemented strict rules on indoor and outdoor events to try and contain the spread of the virus, to the point that even when they were relaxed in 2021, it still didn’t make sense to try and put on a Faire under those conditions.

Thankfully things are largely back to normal-ish now, and as such the Philadelphia Maker Faire had something of a rebirth this year. Organizers decided to move the event to the Independence Seaport Museum, with vendor and exhibitor tables distributed throughout the museum’s three floors. This made the ticket price a great two-for-one value, especially if you had enough time left over to head out to the docks so you could explore the 130-year-old cruiser USS Olympia, and the USS Becuna, one of the last surviving WWII Balao-class submarines.

As you’d expect, the event was packed with fascinating projects and demonstrations, to the point that trying to list them all here would be impossible. But for those who couldn’t make the trip out to see what the 2022 Philadelphia Maker Faire had to offer, let’s take a look at a handful of the standout exhibits.

Continue reading “New Venue Gives Philly Maker Faire A Fresh Start”

Hackaday Podcast 190: Fun With Resin Printing, Tiny Tanks, Lo-Fi Orchestra, And Deep Thoughts With Al Williams

This week, Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos rendezvoused in yet another secret, throwaway location to rap about the hottest hacks from the previous week. We start off by gushing about the winners of the Cyberdeck Contest, and go wild over the Wildcard round winners from the Hackaday Prize.

It’s the What’s That Sound? results show, and Kristina was ultimately stumped by the sound of the Kansas City Standard, though she should have at least ventured a guess after shooting down both modem and fax machine noises.

Then it’s on to the hacks, which feature an analog tank-driving simulator from the 1970s, much ado about resin printing, and one cool thing you can do with the serial output from your digital calipers, (assuming you’re not a purist). And of course, stay tuned for the Can’t-Miss Article discussion, because we both picked one of resident philosopher Al Williams’ pieces.

Direct download.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Continue reading “Hackaday Podcast 190: Fun With Resin Printing, Tiny Tanks, Lo-Fi Orchestra, And Deep Thoughts With Al Williams”

This Snappy 8-Bit Microcomputer Brings The Speed To Retrocomputing

When the need for speed overcomes you, thoughts generally don’t turn to 8-bit computers. Sure, an 8-bit machine is fun for retro gameplay and reliving the glory days, and there certainly were some old machines that were notably faster than the others. But raw computing power isn’t really the point of retrocomputing.

Or is it? [Bernardo Kastrup] over at The Byte Attic has introduced an interesting machine called the Agon Light, an 8-bit SBC that’s also a bit like a microcontroller. The machine has a single PCB that looks about half as big as an Arduino Uno, and sports some of the same connectors and terminals around its periphery. The heart of the Agon Light is an eZ80 8-bit, 18.432 MHz 3-stage pipelined CPU, which is binary compatible with the Z80. It also has an audio-video coprocessor, in the form of an ESP32-Pico-D4, which supports a 640×480 64-color display and two mono audio channels. There’s no word we could find of whether the ESP32’s RF systems are accessible; it would be nice, but perhaps unnecessary since there are both USB ports and a PS/2 keyboard jack. There’s also a pin header for 20 GPIOs as well as I2C, SPI, and UART for serial communication.

The lengthy video below goes into all the details on the Agon Light, including the results of benchmark testing, all of which soundly thrash the usual 8-bit suspects. The project is open source and all the design files are available, or you can get a PCB populated with all the SMD components and just put the through-hole parts on. [Bernardo] is also encouraging people to build and sell their own Agon Lights, which seems pretty cool too. It honestly looks like a lot of fun, and we’re looking forward to seeing what people do with this.

Continue reading “This Snappy 8-Bit Microcomputer Brings The Speed To Retrocomputing”

HP-41C, The Forth Edition

If you have an HP-41 — arguably the best calculator ever made, you might not have noticed that there’s a version of Forth for it. The code was written a while back in assembly and will work on anything that actually emulates the device properly, such as a SwissMicros DM41X. [Calculator Clique] shows you how it works in a recent video that you can watch below.

The original code dates back to 1984, but some recent detective work by [Angel Margin] has the code running again. If you know about synthetic programming on the 41C and the oddities of its internal architecture, you can’t help but be impressed.

Of course, Forth is meant to be easy to port over, but if you read about some of the architectural challenges, you start to realize this could be one of the more difficult implementations you’ve ever seen. Don’t forget you have what is, by today’s standards, an extremely limited amount of resources.

That being said, calling the HP41C a calculator is almost a crime. It is really a tiny computer hiding inside a calculator case. Then again, the best calculators always are.

We wonder if the code would run on an emulated 41C? Were you part of the TI calculator gang? No problem.

Continue reading “HP-41C, The Forth Edition”

ERRF 22: Building A Library Of Filament Colors

If you’ve ever paged through the color samples at the hardware store trying to match a particular color, you know how hard it can be. Not only are there nearly limitless color variations, but each manufacturer has their own formulas and tints. Often times, the only way to get the exact color you need is to get it custom mixed.

Unfortunately, that’s not really an option when it comes to filament for your 3D printer. Will that roll of orange from Hatchbox actually match the orange from Overture? That’s where the Filament Librarian comes in. Created by [Joe Kaufeld], the project aims to catalog and photograph as many 3D printer filaments as possible so you can see exactly what you’re getting.

Now of course, if it was as easy as looking at pictures of filament swatches on your computer, you wouldn’t need this service to begin with. So what’s the trick? A custom automated camera rig, powered by the Raspberry Pi, is used to position, light, and photograph each filament sample in the library. So while [Joe] can’t promise your monitor is showing a perfect representation of each filament’s color, you can at least be sure they will all look correct in relation to each other. So for example, the site can help you figure out if the local Microcenter stocks anything that comes close to matching Prusament’s Galaxy Silver PLA.

[Joe] brought a collection of his samples along with his slick camera setup to the 2022 East Coast RepRap Festival so attendees could see first-hand how he adds a new filament to the database. With an easy-to-use touch-screen interface, it takes just seconds to get the camera ready for the next shot.

Now that he’s got the hardware and the procedure down, [Joe] is asking the community to help out by providing him with filament samples to process. It doesn’t take much: all he asks is you snip him off a couple meters of filament, write down what it is and who makes it on a pre-made form, and drop it in the mail. If you’re in the US, you can send it directly to his address in Indiana, and for those on the other side of the globe, he’s got a drop point in the Netherlands you can use.

We love a good passion project here at Hackaday, so here’s hoping that the Filament Librarian receives plenty of new filament samples from all over the planet to feed into that fancy camera setup of his.