Dual Port RAM Teaches An Old NES New Tricks

nesDPR

[Andrew] is developing a game for the Nintendo Entertainment System (NES). Emulators are great for this, but [Andy] loves running on the real iron. To help, he’s created a dual port RAM interface for his NES. As the name implies, a dual port RAM is a memory with two separate data and address buses. The Cypress Semiconductor CY7C136 [Andy] used also includes arbitration logic to ensure that both ports don’t attempt to access the same memory cell and cause data corruption. In [Andy’s] case the NES was on one side, oblivious to the new hardware. On the other side of the dual port RAM, [Andy] installed an ATmega164 running his own custom firmware.

The new hardware gives [Andy] a live view of what’s going on in the NES’s memory. He added a live memory view/edit screen similar to the FCEUX emulator. The window runs on a PC while the game itself is running on an NES. [Andy] was even able to add rudimentary break and step features by connecting his circuit to the Non Maskable Interrupt (NMI) line of the NES. By holding the NMI asserted, the ATmega can essentially freeze the game in progress.

[Andy] has even used his circuit to teach the NES some new tricks. By reading the timer and score memory locations on Ice Hockey, he was able to create a scoreboard and goal light. Similar techniques were used to give Contra a muzzle flash light which puts Ambilight systems to shame.

We don’t know what [Andy] is planning next, but we hope it’s a source release so we can start hacking some some games ourselves!

Click past the break to see a couple of [Andy’s] Vine videos.

Continue reading “Dual Port RAM Teaches An Old NES New Tricks”

Wood Sphere made with circular saw

Circular Saw Cuts Balls… Wooden Balls, Don’t Worry

Ever wonder how wood spheres are made? Normally they are made on a wood lathe with some fancy jigs and fixtures. [Izzy Swan] set out to bring wood sphere manufacturing to the masses by designing an inexpensive machine that uses a standard circular saw to carve a block of wood into a sphere.

Here’s how it works: a piece of wood is held in a wood fixture and spun using a hand drill. The fixture and drill are mounted to a wooden ring that rotates about a perpendicular axis. The user manually moves the entire assembly back and forth about that second axis while spinning the drill. Meanwhile, a circular saw is moved closer and closer to the soon-to-be-sphere, nibbling away little by little. After most of the material has been cut from the block of wood, it is removed from the fixture and spun 90 degrees to cut the two remaining nubs. The end result is a pretty nice looking sphere.

Continue reading “Circular Saw Cuts Balls… Wooden Balls, Don’t Worry”

Retrotechtacular: ROTOPARK Is A Futuristic Parking Structure From 40 Years Ago

retrotechtacular-rotopark

Pictured above is a functioning model of an automated underground parking structure which was built and used, but obviously it never caught on widely. That makes us a bit sad, as it removes the need to find an empty parking spot every time you use the garage; and having a robot park your car for you seems very future-y.

The gist of the ROTOPARK system is a carousel and elevator system for parking cars. just drive into a single-stall garage at ground level, take your ticket, and walk out the people-hole. The garage stall floor is a sled which moves down an elevator (shown as blue stalls on the left half of the image) to be stored away in the rotating carousels of cars.

Obviously mechanical failure is a huge issue here. What if the elevator breaks? Also, at times of high traffic we think getting your vehicle back out of the system would be quite a bit slower than the “static” parking garages we’re used to. Oh well, maybe some day. Check out the classic marketing video after the break which shows off the concept, construction, and use of the system.

Continue reading “Retrotechtacular: ROTOPARK Is A Futuristic Parking Structure From 40 Years Ago”

Neurogrid circuit board that replicates functions of the human brain.

The Neurogrid – What It Is And What It Is Not

What it is:

Some would argue that replicating the human brain in silicon is impossible. However, the folks over at Brains in Silicon of Stanford University might disagree. They’ve created a circuit board capable of simulating one million neurons and up to 6 billion synapses in real-time. Yes, that’s billion with a “B”. They call their new type of computer The Neurogrid.

The Neurogrid board boasts 16 of their Neurocore chips, with each one holding 256 x 256 “neurons”. It attempts to function like a brain by using analog signals for computations and digital signals for communication. “Soft-wires” can run between the silicon neurons, mimicking the brain’s synapses.

Be sure to stick around after the break, where we discuss the limitations of the Neurogrid, along with a video from its creators.

Continue reading “The Neurogrid – What It Is And What It Is Not”

A Webcam Based Posture Sensor

Webcam based posture sensor

Even for hobby projects, iteration is very important. It allows us to improve upon and fine-tune our existing designs making them even better. [Max] wrote in to tell us about his latest posture sensor, this time, built around a webcam.

We covered [Max’s] first posture sensor back in February, which utilized an ultrasonic distance sensor to determine if you had correct posture (or not). Having spent time with this sensor and having received lots of feedback, he decided to scrap the idea of using an ultrasonic distance sensor altogether. It simply had too many issues: issues with mounting the sensor on different chairs, constantly hearing the clicking of the sensor, and more.  After being inspired by a very similar blog post to his original that mounted the sensor on a computer monitor, [Max] was back to work. This time, rather than using an ultrasonic distance sensor, he decided to use a webcam. Armed with Processing and OpenCV, he greatly improved upon the first version of his posture sensor. All of his code is provided on his website, be sure to check it out and give it a whirl!

Iteration leads to many improvements and it is an integral part of both hacking and engineering. What projects have you redesigned or rebuild? Let us know!

3D Printed Cast With Ultrasound Emitter Promises Faster Healing Times

3dcast-640x426

Almost a year ago, [Jake Evill] broke his hand stopping a fight between his friend and another person. And over the next few weeks he realized how archaic  plaster casts really are — clunky, smelly, itchy — not exactly conducive to healing, other than by keeping your arm completely immobilized. That’s when he came up with the Cortex Cast — a 3D printed exoskeleton cast that provides support, allows your arm to breath, and can even get wet!

Fast forward to today, and another designer is playing with 3D printed casts — but ones that could potentially speed up the healing time! Turkish designer [Deniz Karasahin] heard about a system called the Exogen, which is a low-intensity ultrasound system which can help speed up bone repair, sometimes up to 38% faster. The problem? It doesn’t really work well with regular casts, because the transducer needs to touch the skin — the solution? A 3D printed cast of course!

You see, the ultrasound tech has been around for over 20 years, but has never really seen mainstream use because the difficulties in actually using it, until perhaps now.

Better yet, they’re also hoping to launch trials in the US soon — 3D printers are only good for trinkets and doodads? Pfft.

[Thanks William!]

A Low Cost, Solar-Powered Swamp Cooler

A looming, torturous summer is preparing to bear down on many of us, making this dirt-cheap swamp cooler build an attractive hack to fend off the heat.

Though this is a pretty standard evaporative cooler, the design comes together in a tidy and transportable finished product. The base is a ~$3, 5-gallon bucket from a local hardware store with its accompanying Styrofoam liner. Three 2 1/8″ holes carved into the side of both the bucket and liner will snugly fit some inch-and-a-half PVC pipe with no need for glue.

One last cut into the lid to seat a small desk fan rounds off this build—or you can chop into the styrofoam liner’s lid if you prefer. The video demonstrates using a 15W solar panel to run the fan, and we have to admit that the cooler seems to be an excellent low-cost build. It does, however, require a frozen gallon jug inside to pump out the chilled air for around 5-6 hours per jug. Maybe one of our frugal and mathematically-inclined readers can throw out some guesstimations for the cost of stocking the bucket with a jug of frozen water a couple times a day? Video after the jump.

Continue reading “A Low Cost, Solar-Powered Swamp Cooler”