As I write this, Supercon 2023 is in full swing down in Pasadena — 80 degrees and sunny at the moment, as opposed to 50 and pouring rain where I am, not that I’m bitter. Luckily, though, we can all follow along with the proceedings thanks to the livestreams on the Hackaday channel, which of course will all be available once they’re edited in case you miss anything live. There are a ton of interesting talks coming up, so there’ll be a lot to catch up on when the dust settles. And that won’t be far from now; by the time this post publishes, Supercon will be all but over, which makes it the Thanksgiving dinner of cons — all that work and it’s over in just a few minutes.
Servo Claw Game Puts Your Muscles To The Test
As fun as claw games are, the jaws are always disappointingly weak, and you usually end up with bupkis. What if the jaws were completely within your control? That’s the idea behind [Upside Down Labs]’ muscle-controlled servo claw game.
While electromyography (EMG) is great for identifying neuro-muscular abnormalities and allows for amazing prosthetic limbs to work, it can also be used for fun. As you’ll see in the video after the break, accurate block-stacking (and possible candy-grabbing) depends on teamwork and tensed muscles.
Though the user provides the muscle, the brains behind this operation is an Arduino Uno with a Muscle BioAmp shield stacked on top, which [Upside Down Labs] also created. This shield makes it ridiculously easy to connect EMG sensors and other I²C devices like screens and, well, servo claws. From there, it’s really just a matter of printing the claw, connecting it to a 9g servo, and using an accompanying kit to prepare the skin and connect the muscles to the Arduino. Be sure to check it out in tense block-stacking action after the break.
If you want to listen in on your muscles, look no further than the BioAmp EMG Pill.
Continue reading “Servo Claw Game Puts Your Muscles To The Test”
Reducing Poop On Multicolor Prints
While multicolor printing eliminates painting steps and produces vibrant objects, there are two significant downsides; filament consumption and print time. A single-nozzle filament printer needs to switch from one color to another, and doing so involves switching to the other filament and then purging the transition filament that contains a mixture of both colors, before resuming the print with the clean new color.
[teachingtech] tests out a variety of methods for reducing print time and waste. One surprising result was that purging into the infill didn’t result in significant savings, even when the infill was as high as 50%. Things that did have a positive effect included reducing the amount of purge per transition based on light to dark color changes, and printing multiple copies at once so that even though the total amount of waste was the same as a single part, the waste per part was reduced.
All of the tests were with the same model, which had 229 color changes within a small part, so your mileage may vary, but it’s an interesting investigation into some of the deeper settings within the slicer. Reducing filament waste and print time is an admirable goal, and if you make your own extruder, you can turn all of that purge waste into various shades of greenish brownish filament. Continue reading “Reducing Poop On Multicolor Prints”
Oh, The Places You’ll Go With Stop Motion Animation
Robots made of broken toy parts, stop-motion animation, and a great song to tie it all together were not on our bingo card for 2023, but the results are perfect. [Mootroidxproductions] recently released the official music video for I Fight Dragons 2019 song “Oh the Places You’ll Go”.
The song was written by lead vocalist [Brian Mazzaferri] with inspiration from the classic Dr. Seuss book. [Brian] wrote it for his newborn daughter, and we’re pretty sure it will hit any parent right in the feels.
[Mootroidxproductions] isn’t a parent themselves, but they expanded on the theme to create a video about sacrificing oneself to save a loved one. With a self deprecating wit, they take us through the process of turning broken Bionicle parts, bits of Gundam, Lego, and, armature wire to make the two robots in the film. He also explains how he converted garbage into sets, greebles, and lighting effects.
The robots had to be designed so that they could fulfill their roles in the film. From the size of their hands down to their individual walking gaits, he thought of everything. His encyclopedic knowledge of Bionicle parts is also on full display as he explains the origin of the major parts used to build “Little Blue” and “Sherman”
Click through the break for both the main video and the behind-the-scenes production.
Continue reading “Oh, The Places You’ll Go With Stop Motion Animation”
Perfect Dark: Recompiled
There’s an interesting renaissance of Nintendo 64 gaming, powered by the ability to decompile N64 ROMs back into C code using Ghidra. There are projects around multiple classic games, taking the Ghidra output and renaming the generic function and variable names. There are two approaches to these projects, sometimes happening in parallel. The first is to perfectly recreate the original work, and get a bit-perfect binary that matches the original ROM. The other approach is to fix bugs, optimize the code, and add new features, often porting to new platforms in the process. Right now, we’re seeing the latter happen with 2000’s Perfect Dark.
There is a project by [Ryan Dwyer] to produce a matching C codebase, and that project is functionally complete with an over 99% bit-perfect output. But as impressive as that is, we’re interested in making code even better, and that’s what [fgsfdsfgs] has accomplished with the Perfect Dark port.
The game now runs on Windows or Linux, has mouse support, and runs at a solid 60 frames per second (FPS) at multiple screen resolutions. Want an ultra-widescreen Perfect Dark experience? The upgraded rendering engine handles it wonderfully. Mods? No problem. In the future, the developer is also looking to support high-definition textures.
To play, you do have to provide your own legally sourced copy of the original Perfect Dark game. That is the only way this project is remotely legal, and we suspect that even then it’s in a somewhat grey zone, as a derivative work of a copyrighted game. Big N hasn’t shut the project down, but the Mario 64 port was killed for attempting the same thing. We’ll hope for the best, and enjoy the nostalgia trip in the meanwhile!
Flash Programmer Shows Some Nifty Tricks
A handy tool to have on the bench is a Flash chip programmer, and the ones based around the CH341A USB bus converter chip are readily available. But the chip is capable of so much more than simply programming nonvolatile memory, so [Tomasz Ostrowski] has created a utility program that expands its capabilities. The software provides easy access to a range of common i2c peripherals. He’s got it talking to smart batteries, GPIOs, environmental sensors, an OLED display, and even an FM radio module. The code can all be found in a GitHub repository. The software is Windows-only so no fun and games for Linux users yet — but since it’s open source, new features are just a pull request away.
The CH341A is much more than an i2C controller, it also supports a surprising range of other interfaces including SPI, UARTs, and even a bidirectional parallel printer port. Maybe this software will serve to fire the imagination of a few others, and who knows, we could see more extended use of this versatile chip. Oddly we’ve featured these programmer boards before, though in a tricky flashing job.
Lessons In Printer Poop Recycling
The fundamental problem with multi-color 3D printing using a single hotend is that they poop an awful lot. Every time they change filaments, they’ve got to purge the single nozzle, which results in a huge number of technicolor “purge poops” which on some machines are even ejected out a chute at the back of the printer. The jokes practically write themselves.
What’s not a joke, though, is the sheer mass of plastic waste this can produce. [Stefan] from CNC Kitchen managed to generate over a kilo of printer poop for a 500-gram multi-color print. So he set about looking for ways to turn printer poops back into filament, with interesting results. The tests are based around a commercial lab-scale filament extruder, a 3Devo Composer, but should apply to almost any filament extruder, even the homebrew ones. A few process tips quickly became evident. First, purge poops are too big and stringy (ick) to feed directly into a filament extruder, so shredding was necessary.
Second, everything needs to be very clean — no cross-contamination with plastics other than PLA, no metal bits in the chopped-up plastic bits, and most importantly, no water contamination. [Stefan]’s first batch of recycled filament came from purge poops that had been sitting around a while, and sucked a lot of water vapor from the air. A treatment in a heated vacuum chamber seems to help, but what worked best was using purge poops hot and fresh from a print run. Again, ick.
[Stefan] eventually got a process down that produced decent, usable filament that would jam the printer or result in poor print quality. It even had a pretty nice color, which of course is totally dependent on the mix of colors you start with. Granted, not everyone has access to a fancy filament extruder like his, so this may not be practical for everyone, but it at least shows that there’s a path to reducing the waste stream from any printer, especially multi-material ones.