Fight Frost With An Internet Of Things Fridge Alarm

It has been incredibly humid around these parts over the last week, and there seems to be something about these dog days that makes you leave the fridge or freezer door open by mistake. [pnjensen] found this happening all too often to the family chill chest, with the predictable accretion of frost on the coils as the water vapor condensed out of the entrained humid air and froze. The WiFi-enabled fridge alarm he built to fight this is a pretty neat hack with lots of potential for expansion.

Based on a Sparkfun ESP8266 Thing and home-brew door sensors built from copper tape, the alarm is rigged to sound after 120 seconds of the door being open. From the description it seems like the on-board buzzer provides a periodic reminder pip while the door is open before going into constant alarm and sending an SMS message or email; that’s a nice touch, and having the local alarm in addition to the text or email is good practice. As a bonus, [pjensen] also gets a log of each opening and closing of the fridge and freezer. As for expansion, the I2C header is just waiting for more sensors to be added, and the built-in LiPo charger would provide redundancy in a power failure.

If frost buildup is less a problem for you than midnight snack runs causing another kind of buildup, you might want to check out this willpower-enhancing IoT fridge alarm.

Google’s OnHub Goes Toe To Toe With Amazon Echo

Yesterday Google announced preorders for a new device called OnHub. Their marketing, and most of the coverage I’ve seen so far, touts OnHub as a better WiFi router than you are used to including improved signal, ease of setup, and a better system to get your friends onto your AP (using the ultrasonic communication technique we’ve also seen on the Amazon Dash buttons). Why would Google care about this? I don’t think they do, at least not enough to develop and manufacture a $199.99 cylindrical monolith. Nope, this is all about the Internet of Things, as much as it pains me to use the term.

google-onhub-iot-router-thumbOnHub boasts an array of “smart antennas” connected to its various radios. It has the 2.4 and 5 Gigahertz WiFi bands in all the flavors you would expect. The specs also show an AUX Wireless for 802.11 whose purpose is not entirely clear to me but may be the network congestion sensing built into the system (leave a comment if you think otherwise). Rounding out the communications array is support for ZigBee and Bluetooth 4.0.

I have long looked at Google’s acquisition of Nest and assumed that at some point Nest would become the Router for your Internet of Things, collecting data from your exercise equipment and bathroom scale which would then be sold to your health insurance provider so they may adjust your rates. I know, that’s a juicy piece of Orwellian hyperbole but it gets the point across rather quickly. The OnHub is a much more eloquent attempt at the same thing. Some people were turned off by the Nest because it “watches” you to learn your heating preferences. The same issue has arisen with the Amazon Echo which is “always listening”.

Google has foregone those built-in futuristic features and chosen a device to which almost  everyone has already grown accustom: the WiFi router. They promise better WiFi and I’m sure it will deliver. What’s the average age of a home WiFi AP at this point anyway? Any new hardware would be an improvement. Oh, and when you start buying those smart bulbs, fridges, bathroom scales, egg trays, and whatever else it’ll work for them as well.

As far as hacking and home automation, it’s hard to beat the voice-activated commands we’ve seen with Echo lately, like forcing it to control Nest or operate your Roku. Who wants to bet that we’ll see a Google-Now based IoT standalone device quickly following the shipment of OnHub?

Continue reading “Google’s OnHub Goes Toe To Toe With Amazon Echo”

Skysphere

Living In A Sphere In The Sky

Wow. Looking to live off the grid in style? [Jono Williams] just finished off his rather ambitious Skysphere project.

Using industrial materials (is that highway lamp post tower?), [Jono] designed and built his ultimate apartment tower out in the country. Kind of looks like a futuristic outlook or security post — something straight out of that [Tom Cruise] flick, Oblivion.

The project has been in the works for years, and [Jono] estimates its taken about 3000 hours so far — not to mention $50,000 USD in building materials. It’s solar powered, Android controlled, has a fingerprint scanner at the door, an integrated beer fridge in the couch, RGB LED lighting, WiFi, a stargazing platform, a custom queen size bed, his own AI voice, wireless sound, and automated heat management!  Continue reading “Living In A Sphere In The Sky”

Watch Those VOCs! Open Source Air Quality Monitor

Ever consider monitoring the air quality of your home? With the cost of sensors coming way down, it’s becoming easier and easier to build devices to monitor pretty much anything and everything. [AirBoxLab] just released open-source designs of an all-in-one indoor air quality monitor, and it looks pretty fantastic.

Capable of monitoring Volatile Organic Compounds (VOCs), basic particulate matter, carbon dioxide, temperature and humidity, it takes care of the basic metrics to measure the air quality of a room.

Exploded CAD View

All of the files you’ll need are shared freely on their GitHub, including their CAD — but what’s really awesome is reading back through their blog on the design and manufacturing process as they took this from an idea to a full fledged open-source device.

Did we mention you can add your own sensors quite easily? Extra ports for both I2C and analog sensors are available, making it a rather attractive expandable home sensor hub.

To keep the costs down on their kits, [AirBoxLab] relied heavily on laser cutting as a form of rapid manufacturing without the need for expensive tooling. The team also used some 3D printed parts. Looking at the finished device, we have to say, we’re impressed. It would look at home next to a Nest or Amazon Echo. Alternatively if you want to mess around with individual sensors and a Raspberry Pi by yourself, you could always make one of these instead.

Cat Feeder

Hack Your Cat’s Brain To Hunt For Food

This cat feeder project by [Ben Millam] is fascinating. It all started when he read about a possible explanation for why house cats seem to needlessly explore the same areas around the home. One possibility is that the cat is practicing its mobile hunting skills. The cat is sniffing around, hoping to startle its prey and catch something for dinner. Unfortunately, house cats don’t often get to fulfill this primal desire. [Ben] thought about this problem and came up with a very interesting solution. One that involves hacking an electronic cat feeder, and also hacking his cat’s brain.

First thing’s first. Click past the break to take a look at the demo video and watch [Ben’s] cat hunt for prey. Then watch in amazement as the cat carries its bounty back to the cat feeder to exchange it for some real food.

Continue reading “Hack Your Cat’s Brain To Hunt For Food”

Amazon’s AI Escapes Its Hardware Prison

It’s the 21st century, and we’re still a long way from the voice-controlled computers we were all promised in the 60s, 70s, 80s, and 90s. The state of voice interaction has improved, though, and Amazon’s release of the Alexa Skills Kit (ASK) is another sure step towards a future of computers that will pay attention to you. This allows any hardware to become Alexa, your personal voice assistant with the ability to do just about anything you command.

amazon_echoUp to this point, Alexa was locked away inside the Amazon Echo, the ‘smart’ cylinder that sits in your living room and does most of what you tell it to do. Since the Amazon Echo was released, we’ve seen the Echo and the Alexa SDK used for turning lights on and off, controlling a Nest thermostat, and other home automation tasks. It’s not Google Now, Microsoft’s Cortana, or Apple’s Siri that is behind all these builds; it’s Amazon’s Alexa that is bringing us into a world where Star Trek’s [Scotty] talking into an old Mac is seen as normal.

Right now, the Getting Started guide for the Alexa Skills Kit is focused more on web services than turning lights on and air conditioning off. Sample code for ASK is provided in JavaScript and Java, although we would expect 3rd party libraries for Python to start popping up any day now. If you want to run ASK on a Raspberry Pi or other small Linux computer, you’ll need a way to do voice capture; the Jasper project is currently the front-runner in this space.

We hope this changes the home automation game in a couple of different ways. First, the ASK processes everything in the cloud so very low power devices are now ready for some seriously cool voice interaction. Second, Amazon’s move to open up what you can do with the software backend means a community developing for the hardware could eventually exert pressure on Amazon to do things like making the system more open and transparent.

Already working on some hacks with the Echo or ASK? Send in a tip to your write-up and tells us about it in the comments below.

Saving An Alarm System Remote And $100

[Simon] has been using his home alarm system for over six years now. The system originally came with a small RF remote control, but after years of use and abuse it was finally falling apart. After searching for replacement parts online, he found that his alarm system is the “old” model and remotes are no longer available for purchase. The new system had similar RF remotes, but supposedly they were not compatible. He decided to dig in and fix his remote himself.

He cracked open the remote’s case and found an 8-pin chip labeled HCS300. This chip handles all of the remote’s functions, including reading the buttons, flashing the LED, and providing encoded output to the 433MHz transmitter. The HCS300 also uses KeeLoq technology to protect the data transmission with a rolling code. [Simon] did some research online and found the thew new alarm system’s remotes also use the same KeeLoq technology. On a hunch, he went ahead and ordered two of the newer model remotes.

He tried pairing them up with his receiver but of course it couldn’t be that simple. After opening up the new remote he found that it also used the HCS300 chip. That was a good sign. The manufacturer states that each remote is programmed with a secret 64-bit manufacturer’s code. This acts as the encryption key, so [Simon] would have to somehow crack the key on his original chip and re-program the new chip with the old key. Or he could take the simpler path and swap chips.

A hot air gun made short work of the de-soldering and soon enough the chips were in place. Unfortunately, the chips have different pinouts, so [Simon] had to cut a few traces and fix them with jumper wire. With the case back together and the buttons in place, he gave it a test. It worked. Who needs to upgrade their entire alarm system when you can just hack the remote?