Hackaday Prize 2022: Recycled Tire Table Is Where The Rubber Meets The Road

The problem with good inventions is that we usually end up with way too many of that particular widget lying around, which can cause all kinds of problems. Take the car tire, for instance. They were a great invention that helped spell the end of buggy whips and broken wagon wheels. But there are so many used-up tires about today that some people end up burning them in large piles, of all possible things.

Not [Vaibhav], who prefers to turn trash into utilitarian treasures. With little more than an old tire, some jute rope, and four plastic drink bottles, they made a sturdy, low-slung piece of furniture that could be used as a coffee table, a foot stool, or whatever life calls for.

Construction was fairly simple and involved stabilizing the hollow core with a round piece of cardboard glued to either side of the tire. Then came the jute rope and glue artistry, which hides any trace of the foundational materials. Finally, [Vaibhav] glued four plastic bottles to the bottom to act as legs. We think that steel cans would last longer and support more weight, but if plastic bottles are the only option, you could always fill them with dirt or sand.

Vicious Little Desktop Shredder Pulverizes Plastic Waste

We’ve all likely seen video of the enormous industrial shredders that eat engine blocks for lunch and spit out a stream of fine metal chips. The raw power of these metal-munching monsters is truly fearsome, and they appear to be the inspiration for SHREDII, the miniature plastic shredder for at-home recycling of plastic waste.

The fact that SHREDII isn’t all that large doesn’t make it any less dangerous, at least to things smaller and softer than engine blocks, like say fingers. The core of the shredder is a hexagonal axle carrying multiple laser-cut, sheet steel blades. The rotating blades are spaced out along the axle so they nest between a bed of stationary blades; rotating the common axle produces the shearing and cutting action needed to shred plastic.

On version one of the shredder, each blade had two hooked teeth, and the whole cutting head was made from relatively thick steel. When driven by a NEMA 34 stepper — an admittedly odd choice but it’s what they could get quickly — through a 50:1 planetary gearbox, the shredder certainly did the business. The shreds were a little too chunky, though, so version two used thinner steel for the blades and gave the rotary blades more teeth. The difference was substantial — much finer shreds that were suitable forĀ INJEKTO, their homebrew direct-feed injection molding machine.

There’s a lot to be said for closing the loop on plastics used in desktop manufacturing processes, and the team of SHREDII and INJEKTO stands to help the home gamer effectively reuse plastic waste. And while that’s all to the good, let’s face it — the oddly satisfying experience of watching a shredder like this chew through plastic like it isn’t even there is plenty of reason to build something like this.

Continue reading “Vicious Little Desktop Shredder Pulverizes Plastic Waste”

Running ARM Chips On Algae Power

What’s the size of an AA battery and can run an ARM Cortex M0+ for six months? Well… probably an AA battery, but obviously, that wouldn’t be worth mentioning. But researchers at Cambridge have built a cell of blue-green algae that can do the job.

As you might expect, the algae need light, since they generate energy through photosynthesis. However, unlike conventional solar cells, the algae continue to produce energy in the dark at least for a while. Presumably, the algae store energy during the day and release it at night to survive naturally-occurring periods of darkness.

Generating power from photosynthesis isn’t a new idea since photosynthesis releases electrons. A typical cell has gold electrodes and a proton exchange membrane of some kind. You can see a video from Cambridge below about generating electricity from photosynthesis. Keep in mind, of course, that the Cortex M0+ is capable of very low power operation. Don’t look for that algae-powered spot welder anytime soon.

People tend to get fixated on electricity as energy, but there are other ways to harness photosynthesis. For example, we’ve seen algae fueling a chicken hole in the past. Not to mention we’ve seen algae used to power a robot in a novel and non-electrical way.

Continue reading “Running ARM Chips On Algae Power”

Large Scale Carbon Capture Without The Technology

We humans are in something of a pickle, as we’ve put too much carbon dioxide in the atmosphere and caused climate change that might even wipe us out. There may still be people to whom that’s a controversial statement, but knowing something needs to be done about it should be a position for which you don’t necessarily have to be a climate change activist glueing yourself to the gates of a refinery.

It’s obvious that we can reduce our CO2 emissions to tackle the problem, but that’s not the only way that atmospheric CO2 can be reduced. How about removing it from the air? It’s an approach that’s being taken seriously enough for a number of industrial carbon capture solutions to be proposed, and even for a pilot plant to be constructed in Iceland. The most promising idea is that CO2 from power stations can be injected into porous basalt rock where it can react to form calcium carbonate. All of which is very impressive, but is there not a way that this can be achieved without resorting to too much technology? Time for Hackaday to pull out the back-of-envelope calculator, and take a look. Continue reading “Large Scale Carbon Capture Without The Technology”

Tree Forks As Natural Composite Joints In Architecture

A problem facing architects when designing complex three-dimensional structures lies in their joints, which must be strong enough to take the loads and vector forces applied by the structure, yet light enough not to dominate it. Many efforts have been made to use generative design techniques or clever composites to fabricate them, but as Dezeen reports, a team at MIT are exploring an unexpected alternative in the form of naturally occurring tree forks.

The point at which a tree branch forks from its trunk is a natural composite material formed of an interlocking mesh of wood grain fibres. Timber processors discard these parts of the tree as they interfere with the production of smooth timber, but the same properties that make them support the weight of a branch are it seems perfect for the architects’ needs.

The clever part of the MIT team’s work lies in scanning and cataloguing a library of forks, allowing them to be matched from the database to vertices in an architectural design. The forks are subject to minimal machining before being incorporated into the structure, and to prove it the MIT folks have made a test structure. It’s not uncommon to see medieval barns or half-timbered houses using curved pieces of wood in their natural shapes, so it’s not surprising to see that this 21st century innovation isn’t an entirely new technique.

2022 Hackaday Prize Enters Second Round: Reuse, Recycle, Revamp

Ding! That’s the bell for the second challenge round of the 2022 Hackaday Prize. If your project reuses or recycles what would otherwise be waste materials, or helps you to do the same for further projects, we want to see it.

Hackers are often frugal folk — we’ll recycle parts for projects because it’s easier on the pocketbook when prototyping. But in these strangest of times, when we’ve seen $1 microcontrollers in such shortage that they fetch $57 apiece (if you can get the parts at all), making use of what you’ve got on hand can be an outright necessity. If this is going to become the new normal, it’s going to make sense that we automate it. There’s gold, literally and metaphorically, in busted PCBs. How are you going to get the most value out of our broken electronic waste in our post-apocalyptic near future? Have you built an unpick-and-unplace machine? We’d like to see it.

But electronic parts are a small fraction of your recyclable materials, and plastics might play a larger role. If you’re a 3D printerer, you’ve doubtless thought about recycling plastic bottles into filament. Or maybe you’d like to take some of the existing plastics that are thrust upon you by this modern world and give them a second life? This factory churning out paving stones by remelting plastic with sand is doing it on an industrial scale, but could this be useful for the home gamer? Precious Plastic has a number of inspirational ideas. Or maybe you just need an HDPE hammer?

Have you built a fancy can crusher, or a plastics sorter, or a recycling robot? Head on over to Hackaday.io, write it up, and enter it into the Prize!

Basically any project that helps you recycle or reuse the material around you is fair game here. (But note that if you’ve got epic repair hacks, you’ll want to enter them in the upcoming Round Three: Hack it Back.) This round runs until June 12th and there are ten $500 awards up for grabs, so get hacking!

A boy looking at a small wind turbine

Hackaday Prize 2022: A 3D Printed Portable Wind Turbine For Hikers

If you’re out in the wilderness and off the grid, but still need to charge your phone, the most obvious way to do that is by using a solar panel. Light, flat and without moving parts, they’re easy to store and carry on a hike. But they obviously don’t work in the dark, so what’s a hiker to do if they want to charge their devices at night? If you happen to be in a windy place, then [adriancubas] has the solution for you: a portable wind turbine that folds up to the size of a 2 L soda bottle.

[adrian] designed the turbine to be light and compact enough to take with him on multi-day camping trips. Nearly all parts are 3D printed in PLA, and although ABS or PETG would have been stronger, the current design seems to hold up well in a moderate breeze. The generator core is made from a stepper motor with a bridge rectifier and a capacitor to create a DC output. [adrian] estimates the maximum power output to be around 12 W, which should be more than enough to charge a few beefy power banks overnight.

All parts are available as STL files on [adrian]’s project page, so if you’re looking for some wind power to charge your gadgets on your next camping trip you can go ahead and build one yourself. While we’ve seen large 3D printed wind turbines before, and portable ones for hikers, [adrian]’s clever folding design is a neat step up towards making wind power almost as easy to use as solar power.

Continue reading “Hackaday Prize 2022: A 3D Printed Portable Wind Turbine For Hikers”