RC Cars With First Person Video, All With An ESP32

Those little ESP32-CAM boards which mate the WiFi-enabled microcontroller with a small parallel-interface camera module have been with us for years, and while they are undeniably cool to play with, they sometimes stretch the available performance in trying to process and stream video. [Mattsroufe] has made a very cool project with one of them, not only managing to stream video from a small model car, but also to control the steering and motor by means of servos and a little motor driver.

Sadly it’s not entirely a stand-alone device, as the ESP32 streams video to a web server with some Python code to handle the controls. The server can aggregate several of them on one page though, for perhaps a little real-life quad-screen Mario Kart action if you have enough of the things. We can see that this idea has plenty of potential beyond the mere fun of driving a toy car around though, but to whet your appetite there’s a demo video below.

We’ve seen enough of the ESP32-cam before, but perhaps more as a photographic device.

Continue reading “RC Cars With First Person Video, All With An ESP32”

T1 Is A RISC-V Cray

The crux of most supercomputers is the ability to operate on many pieces of data at once — something video cards are good at, too. Enter T1 (short for Torrent-1), a RISC-V vector inspired by the Cray X1 vector machine.

T1 has support for features, including lanes and chaining. The chip contains a version of the Rocket Core for scalar operations, but there’s no official support for using it. The project claims you could easily replace that core with any other RISC-V CPU IP.

Continue reading “T1 Is A RISC-V Cray”

BLE Rain Gauge Sips Water And Batteries

It isn’t that hard to make an electronic rain gauge if you have a steady source of power or you don’t mind changing batteries often. But [Matthew Ford] offers a third option: a simple device with a Bluetooth Low Energy (BLE) module that can get a few years of a pair of AA batteries.

The approach has several advantages. Batteries make the device self-contained, and changing them infrequently is an obvious win. In addition, the BLE allows the device to be wireless and send data directly to an Android device. Thanks to a WH-SP-RG rain gauge, there’s not much to that part. The smart part is an nRF52832 module and some minor parts. The phone side uses an off-the-shelf Android app.

In a project like this, it is critical to have timers that really put the CPU to sleep. [Matthew] had to modify the Arduino libraries to allow the lp_timer objects to make it to an hour. Without the modifications, the timer can only reach 8.5 minutes. Sure, you could stack them, but that means taking a power hit multiple times an hour which would affect battery life.

Not the most complex project, but more complexity would mean lower battery life, so — as they say — less is more. We couldn’t help but think that with rechargeable batteries and a small solar panel, this could last a very long time.

LoRa, of course, is another choice. You can make 3D print a tipping bucket device, too.

Antique-Style GPS Looks Like Steampunky Fun

These days, turn-by-turn GPS navigation isn’t considered special anymore. It’s in every smartphone and most cheap rental cars, and thus everybody expects you to figure out where you’re going. If you want a simpler and less robust navigation experience, you might like to try the rather fancy RadioScout.

The RadioScout is a build from [hardlyhumanfx]—a group of engineers and artists that collaborate on fun and whimsical projects. It looks like some kind of steampunk compass, and it kind of is—but at heart, it’s powered by GPS.

You program the RadioScout using the buttons on the front panel and a rotary phone dial to enter the latitude and longitude of your destination. It then uses an internal GPS receiver to compare that with your current location, and calculates a direct bearing to where you want to go. This bearing is displayed with a large compass-like needle run by a stepper motor, and you you can use it to guide yourself onwards.

It’s an attractive build that uses lots of neat parts. The team interfaced a microcontroller with a GPS receiver, a rotary dial, and 7-segment LEDs for the latitude and longitude display. The very real bell is neat, too. The whole thing is wrapped up in a brass and wooden case that would make you a star at just about any sci-fi convention. The build video is a little vague on the finer details, but experienced makers will be able to figure out how it all works.

You can actually buy a RadioScout if it’s something you must have, but one suspects the Hackaday set would probably prefer the homebrew route.

Continue reading “Antique-Style GPS Looks Like Steampunky Fun”

A light-up clock displays the day of the week.

What Day Is It Again? Check The Clock

If you’re lucky enough to work from home, you’ll soon find that it presents its own set of challenges, mostly related to work/life balance. It can get so bad that you don’t know what day of the week it is. Really. Ask us how we know.

Rather than miss a meeting (or a day off), prolific hacker [Arnov Sharma] created this day of the week clock. It uses a customized LED driver board with seven sets of three LEDs, each driven by a MOSFET. Each MOSFET is controlled by a DFRobot Mini Beetle ESP32-C3. It runs on a 2200 mAh, 3.7 V lithium-ion battery.

While this is mostly PCBs, there are three printed parts that turn it into a displayable object. We really like the look of this clock — it has just the right amount of pizazz to it and reminds us of a and old movie marquee. Be sure to check out the great build instructions.

We love a good clock around here. In case you missed it, here is the latest from [Moritz v. Sivers] that uses a caustic lens to display the time.

The guts of a cyberpunk Walkman.

Cyber Walkman Does It In Style

One of the best things about adulthood is that finally we get to, in most cases, afford ourselves the things that our parents couldn’t (or just didn’t for whatever reason). When [Yakroo108] was a child, Walkmans were expensive gadgets that were out of reach of the family purse. But today, we can approximate these magical music machines ourselves with off-the-shelf hardware.

A cyberpunk Walkman.Besides the cyberpunk aesthetic, the main attraction here is the UNIHIKER Linux board running the show. After that, it’s probably a tie between that giant mystery knob and the super-cool GUI made with Tkinter.

We also like the fact that there are two displays: the smaller one on the SSD1306 OLED handles the less exciting stuff like the volume level and the current time, so that the main UNIHIKER screen can have all the equalizer/cyberpunk fun.

Speaking of, this user-friendly GUI shows play/stop buttons and next buttons, but it looks like there’s no easy way to get to the previous track. To each their own, we suppose. Everything is enclosed in a brick-like 3D-printed enclosure that mimics early Walkmans with orange foam headphones.

If you want an updated Walkman with keyboard switches (who wouldn’t?), check this out.

Time-of-Flight Sensors: How Do They Work?

With the right conditions, this tiny sensor can measure 12 meters

If you need to measure a distance, it is tempting to reach for the ubiquitous ultrasonic module like an HC-SR04. These work well, and they are reasonably easy to use. However, they aren’t without their problems. So maybe try an IR time of flight sensor. These also work well, are reasonably easy to use, and have a different set of problems. I recently had a project where I needed such a sensor, and I picked up a TF-MiniS, which is a popular IR distance sensor. They aren’t very expensive, and they work serial or I2C. So how did it do?

The unit itself is tiny and has good specifications. You can fit the 42 x 15 x 16 mm module anywhere. It only weighs about five grams — as the manufacturer points out, less than two ping-pong balls. It needs 5 V but communicates using 3.3 V, so integration isn’t much of a problem.

At first glance, the range is impressive. You can read things as close as 10 cm and as far away as 12 m. I found this was a bit optimistic, though. Although the product sometimes gets the name of LiDAR, it doesn’t use a laser. It just uses an IR LED and some fancy optics.

Continue reading “Time-of-Flight Sensors: How Do They Work?”