Adventures In Power Outage Hacking

The best type of power outage is no power outage, but they will inevitably happen. When they do, a hacker with a house full of stuff and a head full of ideas is often the person of the hour. Or the day, or perhaps the week, should the outage last long past the fun little adventure phase and become a nuisance or even an outright emergency.

Such was the position that [FFcossag] found himself in at the beginning of January, when a freak storm knocked out power to his community on a remote island in the middle of the Baltic Sea. [FFcossag] documented his attempts to survive the eight-day outage in vlog form, and although each entry is fairly long, there’s a lot to be learned from his ordeal. His main asset was a wood cook stove in the basement of the house, which served as his heat source. He used a car radiator and a small water pump to get some heat upstairs – a battery bank provided the power for that, at least for a while. The system evolved over the outage and became surprisingly good at keeping the upstairs warm.

The power eventually came back on, but to add insult to injury, almost as soon as it did, the ground-source heat pump in the house went on the fritz. A little sleuthing revealed an open power resistor in the heat pump control panel, but without a replacement on hand, [FFcossag] improvised. Parts from a 30-year-old TV transmitter were close at hand, including a nice handful of power resistors. A small parallel network gave the correct value and the heat pump came back online.

All in all, it was a long, cold week for [FFcossag], but he probably fared better than his neighbors. Want to be as prepared for your next outage? Check out [Jenny]’s comprehensive guide.

Continue reading “Adventures In Power Outage Hacking”

Billiard Ball Finds A New Home In Custom Trackball Mouse

They walk among us, unseen by polite society. They seem ordinary enough on the outside but they hide a dark secret – sitting beside their keyboards are trackballs instead of mice. We know, it’s hard to believe, but that’s the wacky world we live in these days.

But we here at Hackaday don’t judge based on alternate input lifestyles, and we quite like this billiard ball trackball mouse. A trackball aficionado, [Adam Haile] spotted a billiard ball trackball in a movie and couldn’t resist the urge to make one of his own, but better. He was hoping for a drop-in solution using an off-the-shelf trackball, but alas, finding one with the needed features that fit a standard American 2-1/4″ (57.3 mm) billiard ball. Besides, he’s in the thumb control camp, and most trackballs that even come close to fitting a billiard ball are designed to be fiddled with the fingers.

So he started from the ground up – almost. A 1980s arcade-style trackball – think Centipede or Missile Command – made reinventing the trackball mechanism unnecessary, and was already billiard ball compatible. [Adam] 3D-printed a case that perfectly fit his hand, with the ball right under his thumb and arcade buttons poised directly below his fingers. A palm swell rises up to position the hand naturally and give it support. The case, which contains a Teensy to translate the encoder signals into USB commands, is a bit on the large side, but that’s to be expected for a trackball.

Still curious about how the other half lives? We’ve got plenty of trackball hacks for you, from the military to the game controller embedded to the strangely organic looking.

Printing Christmas Cards The Hard Way

Printing customized Christmas cards is a trivial matter today: choose a photo, apply a stock background or border, add the desired text, and click a few buttons. Your colorful cards arrive in a few days. It may be the easiest way, but it’s definitely no where near as cool as the process [linotype] used this season. (Editor’s note: skip the Imgur link and go straight for the source!)

The first task was to create some large type for the year. [linotype] laser printed “2018” then used an iron to transfer toner to the end of a piece of scrap maple flooring. Carving the numbers in relief yielded ready-to-go type, since the ironing process took care of the necessary mirroring step. The wood block was then cut to “type high” (0.918 inches; who knew?) using a compositor’s table saw – with scales graduated in picas, of course.

Continue reading “Printing Christmas Cards The Hard Way”

Cloning Knobs For Vintage Testing Equipment

Knobs! Shiny candy-colored knobs! The last stand of skeuomorphism is smart light switches! Everyone loves knobs, but when you’re dealing with vintage equipment with a missing knob, the odds of replacing it are slim to none. That’s what happened to [Wesley Treat] when he picked up a vintage Philco tube tester. The tester looked great, but a single knob for a rotary switch was missing. What to do? Clone some knobs! You only need some resin and a little bit of silicone.

The process of copying little bits of plastic or bakelite is fairly standard and well-tread territory. Go to Michaels or Hobby Lobby, grab some silicone and resin, make a box, put your parts down, cover them in silicone, remove the parts, then put resin in. For simple parts, and parts with flat bottoms like knobs, this works great. However, there’s something weird about the knob on this old Philco tube tester. Firstly, it doesn’t fit a standard 1/4″ shaft — it’s a bit bigger. There’s also no set screw. Instead, this knob has a stamped spring aligning it with the flat part of the D-shaft in this rotary switch. This means a copy of this knob wouldn’t be useful to anyone else, and that no other knob would work with this tube tester.

However, a bit of clever engineering would make a copy of this knob fit the existing switch. Once the resin was cured, [Wesley] drilled out the hole, then sanded a dowel down to fit into the flat of the D-shaft. It took a little kergiggering, but the knob eventually fit onto one of the rotary switches. Not bad for a few bucks in silicone and resin.

You can check out the entire build process below.

Continue reading “Cloning Knobs For Vintage Testing Equipment”

Cheap Muon Detectors Go Aloft On High-Altitude Balloon Mission

There’s something compelling about high-altitude ballooning. For not very much money, you can release a helium-filled bag and let it carry a small payload aloft, and with any luck graze the edge of space. But once you retrieve your payload package – if you ever do – and look at the pretty pictures, you’ll probably be looking for the next challenge. In that case, adding a little science with this high-altitude muon detector might be a good mission for your next flight.

[Jeremy and Jason Cope] took their inspiration for their HAB mission from our coverage of a cheap muon detector intended exactly for this kind of citizen science. Muons constantly rain down upon the Earth from space with the atmosphere absorbing some of them, so the detection rate should increase with altitude. [The Cope brothers] flew two of the detectors, to do coincidence counting to distinguish muons from background radiation, along with the usual suite of gear, like a GPS tracker and their 2016 Hackaday prize entry flight data recorder for HABs.

The payload went upstairs on a leaky balloon starting from upstate New York and covered 364 miles (586 km) while managing to get to 62,000 feet (19,000 meters) over a five-hour trip. The [Copes] recovered their package in Maine with the help of a professional tree-climber, and their data showed the expected increase in muon flux with altitude. The GoPro died early in the flight, but the surviving footage makes a nice video of the trip.

Continue reading “Cheap Muon Detectors Go Aloft On High-Altitude Balloon Mission”

See The Radioactive World With This Peltier Cloud Chamber

Remember when a homemade cloud chamber was a science fair staple? We haven’t participated for decades, but it seemed like every year someone would put a hunk of dry ice in a fish tank, add a little alcohol, and with the lighting just right – which it never was in the gymnasium – you might be lucky enough to see a few contrails in the supersaturated vapor as the occasional stray bit of background radiation whizzed through the apparatus.

Done right, the classic cloud chamber is a great demonstration, but stocking enough dry ice to keep the fun going is a bit of a drag. That’s where this Peltier-cooled cloud chamber comes into its own. [mosivers] spares no expense at making a more permanent, turn-key cloud chamber, which is perched atop a laser-cut acrylic case. Inside that is an ATX power supply which runs a Peltier thermoelectric cooling module. Coupled with a CPU cooler, the TEC is able to drive the chamber temperature down to a chilly -42°C, with a strip of white LEDs providing the required side-lighting. The video below gives a tour of the machine and shows a few traces from a chunk of pitchblende; it’s all pretty tame until [mosivers] turns on his special modification – a high-voltage grid powered by a scrapped electronic fly swatter. That really kicks up the action, and even lets thoriated TIG welding electrodes be used as a decent source of alpha particles.

It’s been a while since we’ve seen a Peltier cloud chamber build around here, which is too bad because they’re great tools for engaging young minds as well as for discovery. And if you use one right, it just might make you as famous as your mother.

Continue reading “See The Radioactive World With This Peltier Cloud Chamber”

DIY Guided Telescope Mount Tracks Like A Barn Door

Astrophotography is an expensive hobby. When assembling even a basic setup consisting of a telescope, camera, guiding equipment and mount, you can easily end up with several thousand dollars worth of gear. To reduce the monetary sting a little, [td0g] has come up with an innovative homebrew mount and guiding solution that could be assembled by almost any dedicated amateur, with the parts cost estimated around $100. The accuracy required to obtain high-quality astrophotographs is quite demanding, so we’re impressed with what he’s been able to achieve on a limited budget.

The inspiration for this design comes from an incredibly simple star tracking device known as a barn-door tracker, or Haig mount. Invented by George Haig in the 1970’s, this mount is essentially nothing more than a hinge aligned with the Earth’s axis of rotation. A threaded rod or screw, turned at a constant rate, is used to slowly open the hinge so that a mounted camera tracks the apparent motion of the heavens. As a result, long exposures can show pinpoint images of stars and sharp details of deep-sky objects, instead of curved star trails. [td0g] adapted this technique to drive a more traditional telescope mount, using barn-door-like drive screws on both the right ascension and declination axes. A pair of NEMA 17 stepper motors drive 4-mm pitch Acme threaded rods through toothed pulleys 3D printed from PETG.

Speaking of 3D-printed parts, this build is a good example of judicious use of the technology: where metal parts are warranted, metal parts are used, and printed plastic is relegated to those places where it can adequately do the job. [td0g] has placed the STL files for the printed parts on Thingiverse in case you want to replicate the drive.

The non-linear relationship between the threaded rod rotation and right ascension drive rate usually limits the length of exposure you can reasonably achieve with a barn-door tracker. To adjust for this, [td0g] created a lookup table in firmware to compensate the drive and allow longer exposures. He mentions that the drive will operate for three hours before it hits the end of the screw’s travel and needs to be reset, but if he can manage three hour exposures, his skies must be much darker than ours!

Continue reading “DIY Guided Telescope Mount Tracks Like A Barn Door”