The Zero Ohm Resistor

What’s your favorite value of resistor? 1K? 10K? They’re all fine, but when you need nearly no resistance at all, nothing beats the good old zero-ohm resistor.

Wait a minute! Resistors are supposed to resist current. What the heck does a zero-ohm resistor do? Well, the short story (tee-hee!) is that it’s like a jumper for single-sided surface-mount boards. In the bad old days, companies used to save money by running single-sided boards, and you could buy wire jumpers to help make the layout that much easier.

Fast forward to the modern era, where there’s not a through-hole component to be seen. What’s the resistance (ideally) of a wire? Zero ohms. And thus the zero-ohm resistor was born. We have a whole spool of them in our closet in 1206, the largest SMD size that we use, in order to be able to sneak two or three tracks underneath, even on a home-etched board. They’re great.

Anyway, what set us off rhapsodizing about the lowest value resistor was this article on the peculiarities of the zero ohm resistor. Of course, nothing has zero resistance, and the article walks you through some of their real-world properties. Enjoy!

Foundry From Scrapped Oven For Cheap, Clean Castings

Home-built foundries are a popular project, and with good reason. Being able to melt and cast metal is a powerful tool, even if it’s “only” aluminum. But the standard fossil-fuel fired foundries that most people build are not without their problems, which is where this quick and clean single-use foundry comes into play.

The typical home foundry for aluminum is basically a refractory container of some kind that can take the heat of a forced-air charcoal or coal fire. But as [Turbo Conquering Mega Eagle] points out, such fuels can lead to carbon contamination of the molten aluminum and imperfections when the metal is cast. With a junked electric range, [Turbo Conquering Mega Eagle] fabricates a foundry that avoids the issue in an incredibly dangerous way. The oven’s heating element is wrapped around an old stainless saucepan, fiberglass bats from the stove insulate the ad hoc crucible, and the range’s power cord is attached directly to the heating element. The video below shows that it does indeed melt aluminum, which is used to sand cast a fairly intricate part.

We can’t see getting more than one use out of this setup, though, so it’s only as sustainable as the number of ranges you can round up. But it’s worth keeping in mind for one-off jobs. For a more permanent installation, check out this portable propane-powered foundry. And to see what you can make with one, check out this engine breather cast from beer cans.

Continue reading “Foundry From Scrapped Oven For Cheap, Clean Castings”

Make Your Own Nuclear Battery

miami_nano
A commercial nuclear battery from City Labs.

A Betavoltaic cell is a device that uses a radioactive source of beta particles and a semiconductor p-n junction to generate electricity. Tritium, an isotope of hydrogen, is often used as the radioactive element. You may think that tritium is hard to obtain or even forbidden, however, recently you can find tritium in self-lightning key chains, and it is also used in watches and firearm night sights. The beta particles (electrons) from the tritium radioactive process causes phosphors in the device to glow, giving a light that can last for years.

[NurdRage] has just created a nuclear battery using tritium vials from key chains. After getting rid of the plastic containers, he sandwiches the vials between two small solar panels. That’s all! Instant power for the next 15 years. Of course, the amount of power you can get from this device is on the order of microwatts. The battery produces around 1.6 volts at 800 nano amps. He gets 1.23 microwatts, not much, but it is in fact more than the output of commercial units at 0.84 microwatts, for a ten percent of the cost. That minuscule amount of power is actually not easy to measure, and he does a great job explaining the circuit he used to measure the current.

Continue reading “Make Your Own Nuclear Battery”

Craziest Pin-Saving LCD Trick Ever!

We love squeezing every last bit of silicon goodness out of a tiny chip, or at least we delight in seeing it done. Today’s analog/digital hack is one of the sweetest we’ve seen in a while. And it’s also a little bit of a puzzle, so don’t scroll down to the answer until you’ve given the schematic a good think-over.

Continue reading “Craziest Pin-Saving LCD Trick Ever!”

Tesla Coil Powered Film Canister Gatling Gun

What do you get when you combine a Tesla coil, 315 film canisters and a fortune wheel? The answer is of course a film canister Gatling gun. [ScienceBob] has taken the simple film canister cannon hack to a whole new level. The idea is simple, the film canister has a lid that fits tight and allows pressure to build up, so if you fill it with alcohol vapor and ignite it with a spark gap, you get a small explosion that sends the can flying  away.

[ScienceBob] uses 21 rows of fifteen canisters each around the wheel. There is a spark gap for each canister, and all the spark gaps in the same row are in series. You need a lot of volts to turn on fifteen spark gaps, and that is why the Tesla coil is part of the game. When the outer end of the wire in one row passes near the Tesla coil, a spark jumps and fires all the spark gaps, igniting the alcohol vapor and fifteen cans are expelled from the wheel. The wheel rotates until all rows are fired.

While this nice piece of artillery is sure a lot of fun to fire, but don’t ask us to reload it! If you want more power, check this Gatling gun that fires crossbow bolts, or the Gatling water pistol.

Continue reading “Tesla Coil Powered Film Canister Gatling Gun”

Silicon Wafer Transfer Machine Is Beautifully Expensive

There’s nothing more freeing than to be an engineer with no perceptible budget in sight. [BrendaEM] walks us through a teardown of a machine that was designed under just such a lack of constraint. It sat inside of a big box whose job was to take silicon wafers in on one side and spit out integrated circuits on the other.

[BrendaEM] never really divulges how she got her hands on something so expensive that the engineer could specify “tiny optical fiber prisms on the end of a precision sintered metal post” as an interrupt solution for the wafer.  However, we’re glad she did.

The machine features lots of things you would expect; pricey ultra precise motors, silky smooth linear motion systems, etcetera. At one point she turns on a gripper movement, the sound of it moving can be adequately described as poetic.

It also gives an unexpected view into how challenging it is to produce the silicon we rely on daily at the ridiculously affordable price we’ve come to expect. Everything from the ceramic plates and jaws that can handle the heat of the silicon right out of the oven to the obvious cleanliness of even this heavily used unit.

It’s a rare look into an expensive world most of us peasants aren’t invited to. Video after the break.

Continue reading “Silicon Wafer Transfer Machine Is Beautifully Expensive”

LEGO Technics Machine Produces True Braided Rope

We love a good LEGO build as much as anyone, but Technics takes it to the next level in terms of creating working mechanisms. And nobody takes Technics as far as [Nico71], as evidenced by his super-fast Technics rope braiding machine.

The last time we saw one of [Nico71]’s builds, it was also a LEGO Technics rope-making machine. At the time, we called it a “rope-braiding machine” and were taken to task in the comments since the strands were merely twisted to make the final product. [Nico71] must have taken that to heart, because the current build results in true braided cordage. That trick is accomplished by flying shuttles that are not attached to either of the two counter-rotating three-spoked wheels. The shuttles are transferred between the two wheels by a sweeper arm, each making a full revolution with one wheel before being transferred to the other. Each shuttle’s thread makes an intertwining figure-eight around the threads from the two fixed bobbins, and the result is a five-strand braided cord. The whole machine is mesmerizing to watch, and the mechanism is silky smooth even at high speeds. It seems like a much simpler design than the previous effort, too.

You’ve got to hand it to builders like [Nico71] that come up with fascinating machines while working within the constraints of the Technics world. And those that leverage the Technics platform in their builds can come up with pretty neat stuff, like this paper tape reader for a music machine.

Continue reading “LEGO Technics Machine Produces True Braided Rope”