Miller (Effect) Time

While the Miller effect might sound like fun, it is actually the effect of parasitic capacitance in amplifiers. What do you do about it? Watch the video below the break from [All Electronics] and find out. We like how the test circuit it uses has a switch to put the mitigation circuitry in and out of the test for comparison purposes.

Actually, the Miller effect can refer to any impedance but in practice that is most often parasitic capacitance because of the construction used for tubes and transistors. The sometimes tiny capacitance gets multiplied by the inverting gain of the stage and increases the amplifier’s input impedance. This, in turn, reduces the bandwidth of the stage.

Continue reading “Miller (Effect) Time”

It’s Super Easy To Build Yourself A USB-C Variable Power Supply These Days

Once upon a time, building yourself a power supply required sourcing all manner of components, from transformers to transistors, knobs, and indicators. These days, everything’s a bit more integrated which helps if you’re trying to whip something up in a hurry. This build from [Ricardo] shows just how straightforward building a power supply can be.

The build is a simple mashup, starting with a ZY12PDN USB Power Delivery board. This board talks to a USB-C supply that is compatible with the Power Delivery standard, and tells it to deliver a certain voltage and current output. This is then used to supply power to a pre-built power supply module that handles current limiting, variable voltage output, and all that fancy stuff. It even comes with a screen built-in! Simply slap the two together in a 3D printed case with a couple of banana plugs, and you’re almost done.

All you need then is a USB-C power supply – [Ricardo] uses a portable power bank which allows him to use the power supply on the go. It’s a great alternative to a traditional heavy bench supply, and more than enough for a lot of hobby uses.

We’ve seen a lot of interest in USB Power Delivery recently, and its likely hackers will continue to enjoy the standard for some time to come. If you’ve got your own USB PD hack, be sure to let us know!

Overdriving Vacuum Tubes And Releasing The Magic Light Within

We’ve all seen electronic components that have been coaxed into releasing their small amount of Magic Smoke, which of course is what makes the thing work in the first place. But back in the old times, parts were made of glass and metal and were much tougher — you could do almost anything to them and they wouldn’t release the Magic Smoke. It was very boring.

Unless you knew the secret of “red plating”, of course, which [David Lovett] explores in the video below. We’ve been following [David]’s work with vacuum tubes, the aforementioned essentially smokeless components that he’s putting to use to build a simple one-bit microprocessor. His circuits tend to drive tubes rather gently, but in a fun twist, he let his destructive side out for a bit and really pushed a few tubes to see what happens. And what happens is pretty dramatic — when enough electrons stream from the cathode to the anode, their collective kinetic energy heats the plate up to a cherry-red, hence the term “red plating”.

[David] selected a number of victims for his torture chamber, not all of which cooperated despite the roughly 195 volts applied to the plate. Some of the tubes, though, cooperated in spades, quickly taking on a very unhealthy glow. One tube, a 6BZ7 dual triode, really put on a show, with something getting so hot inside the tube as to warp and short together, leading to some impressive pyrotechnics. Think of it as releasing the Magic Light instead of the Magic Smoke.

Having seen how X-ray tubes work, we can’t help but wonder if [David] was getting a little bit more than he bargained for when he made this snuff film. Probably not — the energies involved with medical X-ray tubes are much higher than this — but still, it might be interesting to see what kinds of unintended emissions red-plating generates.

Continue reading “Overdriving Vacuum Tubes And Releasing The Magic Light Within”

Wobble Disk Coffee Roaster Looks Good In Wood

If you love coffee, you probably make it yourself at home most of the time using beans from some hipster coffee shop where the employees have full-sleeve tattoos and strong opinions. Maybe you even buy whole beans and grind them right before you use them. If you want to go all the way, you gotta roast those beans yourself. There are various ways to go about it, like repurposing a hot air corn popper. If you’re [Larry Cotton], you buy heaps of green beans and keep building wobble disk roasters until you’ve achieved DIY perfection.

[Larry]’s latest roaster boasts all-wood construction with no metal brackets or housings in the structural parts. This is good because you’re less likely to burn yourself on anything, and you aren’t sinking heat away from the beans. Nothing should get hot except the sifter, the beans, and the stiff triangle of wire that holds the heat gun nozzle in place. Once the roasting cycle is complete, [Larry] just shakes out the beans onto an adjacent screen that’s situated over a fan so they can cool off.

Unlike some of [Larry]’s previous designs, this one uses an 8-cup flour sifter situated over a heat gun. A battery-powered screwdriver drives the wobbling disk that churns the beans and helps them roast evenly, and a wooden arm holds down the power button. We love the simplicity of this machine, and think wobble disk roasters are mesmerizing to watch. Check out the video after the break to see it in action and learn how to build your own.

There’s more than one way to roast beans, and one of them is even officially sanctioned by Hackaday editor [Elliot Williams].

Continue reading “Wobble Disk Coffee Roaster Looks Good In Wood”

Revolving Plant Tower Is Solar-Powered

Do you live in a small or yard-less space, but want to grow things anyway? You’re not totally out of luck — you’ll just have to get creative and probably vertical with your planting scheme. And since apartments and other smallish dwellings often have a limited amount of exposure, it would really help a lot if you could somehow rotate the plants so that they receive even sunlight.

[JT_Makes_It]’s rotating strawberry tower ticks all these boxes and more. The 12 V solar cell powers a small DC motor that spins at the gentle speed of 0.6 RPM. The tube is hanging from a swiveling carabiner that acts like a clutch — if a strong wind comes along or something bumps into it, the motor will continue to spin the carabiner.

[JT_Makes_It] already had a tube with holes, though they did cut several more into it. As built, this is not exactly apartment dweller-friendly, unless you have off-site access to things like plasma cutters and welding equipment. But as they point out, you could theoretically use PVC and a hole saw and make it shorter and therefore lighter. We think this looks great, although we’re a bit concerned about the weight. Not so much on the mechanism itself; that looks strong. We’re just wondering how long that carport frame will support it. Judge the build quality for yourself from the video after the break.

Did you know that strawberries can do tricks? Fasciation makes fanned-out berries, and vivipary makes them hairy.

Continue reading “Revolving Plant Tower Is Solar-Powered”

A Capable Nerf Launcher Robot

Nerf blasters are fun to play with, and it’s now possible to even get robotic Nerf launchers you can use to chase around your friends. [Engineering After Hours] wasn’t satisfied with the official hardware, though, so built his own remote control Nerf rig to battle it out in the back yard.

The rig is built around an earlier build from [Engineering After Hours], a skid-steer RC chassis that is nice and tough to handle rough and tumble driving. It’s paired with a trailer attached to the center of rotation of the chassis that makes the pair highly maneuverable.

In order to launch rockets, an air tank on the trailer is hooked up to some piping to launch four Nerf rockets. Charged up to just 40 psi, it’s capable of launching the rounds with plenty of power for play purposes. Paired with a elevation control and a servo to trigger the firing valve, it’s a complete system that can shoot on the go.

It’s a fun build that packs a punch, even if it doesn’t quite have the accuracy or range you might desire in an all-conquering Nerf combat platform.  We’d love to see a similar build hooked up to some AI smarts to stalk targets independently of human control. Video after the break.

Continue reading “A Capable Nerf Launcher Robot”

Building A Big Ol’ Powerful Wheelbarrow

Sometimes you’ve gotta haul big heavy loads around a wide area. Regular wheelbarrows are fine, but it can quickly grow tiring when one has to make multiple trips. [Workshop from Scratch] instead elected to build a powered wheelbarrow, with plenty of grunt to shift loads about.

The build is absolutely from the ground up, welded up from sections of steel RHS, and given rear steering for plenty of maneuverability. The actual job of steering is handled by a rack repurposed from automotive use, set up with a single-sided attachment to the rear wheel assembly. It’s quite a neat and tidy way of doing the job, and seems to work well. Drive is sent to the front wheels through a hydrostatic lawnmower transmission. A 17-horsepower engine provides plenty of grunt for the job at hand, even coming with electric start already fitted for the ultimate in ease-of-use.

It’s impressive to see just how much of the rig was put together from raw materials; even the fuel tank was fabricated in steel. We’ve seen similar builds from [Workshop from Scratch] before, like this tidy bandsaw. Video after the break.

Continue reading “Building A Big Ol’ Powerful Wheelbarrow”