Experiment With SFP Modules With This Handy Breakout

While most home networking hardware comes with network ports baked in from the factory, industrial grade gear is typically more versatile. Using standards like Small Form-factor Pluggable, or SFP, network switches can be used with a variety of transport mediums by simply swapping tranceivers in and out. These network devices typically handle the nitty gritty of transmitting Ethernet over fiber optics, and for those keen to experiment, this breakout may come in handy.

The board design comes complete with an SFP receptacle, allowing a variety of compatible receivers to be plugged in for experimentation. With the standard using differential signalling, the board carries hardware to allow the transceiver to be fed with single-ended signals instead, though a differential version is available too. The board can be used for transmitting different signals over fiber, outside just Ethernet, or used as a simple way to reprogram SFP modules via I2C. The latter can be useful to get around DRM in network switches that attempt to lock out generic transceiver modules.

It’s a useful piece of hardware for the fiber optic tinkerer and network admin alike. You might also find it useful if you’re building your own 10-gigabit network at home!

Basics Of Remote Cellular Access: Connecting Via VPN

You’ve got a machine hooked up to the Internet via a shiny new cellular modem, which you plan to administer remotely. You do a quick check on the external IP, and try and log in from another PC. Try as you might, SSH simply won’t connect. What gives?

The reality of the modern internet is that most clients no longer get their own unique IPv4 address. There simply aren’t enough to go around anymore. Instead, most telecommunications operators use Carrier Grade Network Address Translation which allows a single external address to be shared by many customers. This can get in the way of direct connection attempts from the outside world. Even if that’s not the case, most cellular operators tend to block inbound connections by default. However, there is a way around this quandary – using a VPN. Continue reading “Basics Of Remote Cellular Access: Connecting Via VPN”

Leaking Data Slowly By Switching Ethernet Speeds

Airgapping refers to running a machine or machines without connections to external networks. Literally, a gap of air exists between the machine and the outside world. These measures present a challenge to those wishing to exfiltrate data from such a machine, leading to some creative hacks. [Jacek] has recently been experimenting with leaking data via Ethernet adapters.

The hack builds on [Jacek]’s earlier work with the Raspberry Pi 4, in which the onboard adapter is rapidly switched between 10 and 100 Megabit modes to create a signal that can be picked up via radio up to 100 meters away. Since then, [Jacek] determined the Raspberry Pi 4, or at least his particular one, seems to be very leaky of RF energy from the Ethernet port. He decided to delve deeper by trying the same hack out on other hardware.

Using a pair of Dell laptops connected back to back with an Ethernet cable, the same speed-switching trick was employed. However, most hardware takes longer to switch speeds than the Pi 4; usually on the order of 2-5 seconds. This limited the signalling speed, but [Jacek] was able to set this up to exfiltrate data using QRSS, also known as very slow speed Morse code. The best result was picking up a signal from 10 meters away, although [Jacek] suspects this could be improved with better antenna hardware.

While slow data rates and the one-way nature of such communication limit the utility of such an attack, it nonetheless shows that securing a machine isn’t as simple as unplugging it from the network. We’ve done a feature on such hacks before for those interested in learning more. Video after the break.

Continue reading “Leaking Data Slowly By Switching Ethernet Speeds”

Tiny Ethernet Routers Now Available In Gigabit Speeds

If you need to move a lot of data, and fast, Gigabit Ethernet is a great way to do it. However, most network hardware outside of datacenters is fairly space inefficient, a headache if you’re building a robot or drone. Enter the Gigablox, a super-compact Gigabit router for just these applications.

The Gigablox takes its mission seriously, with its compact size the ultimate design goal. The entire switch fits on a tiny 45 mm x 45 mm PCB. To this end, it eschews the common RJ45 connector, which is bulkier than necessary. Instead, thin Molex PicoBlade connectors are used for the five ports on board. Cables are included to convert between the two connectors, and obviously crimping ones own is easy to do, too. For those who need to connect more devices, several Gigablox can be hooked up in the same way as any other Ethernet switch. The Gigablox is a non-blocking switch, too – meaning all five ports can run at full speed simultaneously.

The design is the sequel to the SwitchBlox, and the later SwitchBlox Nano, both designed by [Josh Elijah] earlier this year. The pace of development is impressive, and it’s great to see [Josh] bring Gigabit speeds to the compact form factor. We can imagine a few good uses for these boards; share your best ideas in the comments below! Video after the break.

Continue reading “Tiny Ethernet Routers Now Available In Gigabit Speeds”

DSL Is Barely Hanging On The Line As Telcos Stop Selling New Service

Are you reading this over AT&T DSL right now? If so, you might have to upgrade or go shopping for a new ISP soon. AT&T quietly stopped selling new traditional DSLs on October 1st, though they will continue to sell their upgraded fiber-to-the-node version. This leaves a gigantic digital divide, as only 28% of AT&T’s 21-state territory has been built out with full fiber to the home, and the company says they have done almost all of the fiber expansion that they intend to do. AT&T’s upgraded DSL offering is a fiber and copper hybrid, where fiber ends at the network node closest to the subscriber’s home, and the local loop is still over copper or coax.

At about the same time, a report came out written jointly by members of the Communications Workers of America union and a digital inclusion advocacy group. The report alleges that AT&T targets wealthy and non-rural areas for full fiber upgrades, leaving the rest of the country in the dark.

As the internet has been the glue holding these unprecedented times together, this news comes as a slap in the face to many rural customers who are trying to work, attend school, and see doctors over various videoconferencing services.

If you live in a big enough city, chances are you haven’t thought of DSL for about twenty years, if ever. It may surprise you to learn of the popularity of ADSL in the United Kindom. ADSL the main source of broadband in the UK until 2017, having been offset by the rise of fibre-to-the-cabinet (FTTC) connections. However, this Ofcom report shows that in 2018 ADSL still made up more than a third of all UK broadband connections.

Why do people still have it, and what are they supposed to do in the States when it dries up?

Continue reading “DSL Is Barely Hanging On The Line As Telcos Stop Selling New Service”

Ethernet At 40: From A Napkin Sketch To Multi-Gigabit Links

September 30th, 1980 is the day when Ethernet was first commercially introduced, making it exactly forty years ago this year. It was first defined in a patent filed by Xerox as a 10 Mb/s networking protocol in 1975, introduced to the market in 1980 and subsequently standardized in 1983 by the IEEE as IEEE 802.3. Over the next thirty-seven years, this standard would see numerous updates and revisions.

Included in the present Ethernet standard are not just the different speed grades from the original 10 Mbit/s to today’s maximum 400 Gb/s speeds, but also the countless changes to the core protocol to enable these ever higher data rates, not to mention new applications of Ethernet such as power delivery and backplane routing. The reliability and cost-effectiveness of Ethernet would result in the 1990 10BASE-T Ethernet standard (802.3i-1990) that gradually found itself implemented on desktop PCs.

With Ethernet these days being as present as the presumed luminiferous aether that it was named after, this seems like a good point to look at what made Ethernet so different from other solutions, and what changes it had to undergo to keep up with the demands of an ever-more interconnected world. Continue reading “Ethernet At 40: From A Napkin Sketch To Multi-Gigabit Links”

Free P2P VPN

People use a VPN — virtual private network — for a lot of reasons. However, for many people it is synonymous with hiding your network traffic, one thing that VPN can do. FreePN is a relatively new open source project that aims to build a free peer-to-peer VPN network. Like TOR, it is decentralized.

Right now, you can download for Ubuntu and Gentoo. There is a way to ask for early access for Debian, Fedora, and Arch. Windows, iOS, MacOS, and Android versions are promised for the future.

Continue reading “Free P2P VPN”